CS480/680: Introduction to Machine Learning
Lecture 9: Multilayer Perceptron (MLP)

Hongyang Zhang

Feb 8, 2024

XOR Recalled

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
0	1	0	1	
	0	0	1	1
\mathbf{y}	-	+	+	-

- We have shown no linear classifier can separate the data.

Fixing the Problem

- A linear classifier in the input space underfits the XOR data
- Can fix input representation but use a richer model (e.g., a quadratic classifier)
- Can fix the classifier as linear but use a richer input representation (the power of lifting)
- The two approaches are equivalent for certain classifiers, by a reproducing kernel
- Neural network: learn the feature map simultaneously with the linear classifier!

Multi-Layer Perception (MLP)

- 1st linear transformation: $\mathbf{z}=\mathbf{U x}+c, \quad \mathbf{U} \in \mathbb{R}^{2 \times 2}, \mathbf{c} \in \mathbb{R}^{2}$
- Element-wise nonlinear activation: $\mathbf{h}=\sigma(\mathbf{z})$
- 2nd linear transformation: $\hat{y}=\langle\mathbf{h}, \mathbf{w}\rangle+b, \quad \mathbf{w} \in \mathbb{R}^{2}, b \in \mathbb{R}$
- Output layer: $\operatorname{sign}(\hat{y})$ or $\operatorname{sigmoid}(\hat{y})$
- BLUE: parameters to be learned

Does It Work on XOR Dataset?

Consider a well-trained 2-layer NN:

- 1st linear transformation: $\mathbf{z}=\mathbf{U x}+\mathbf{c}, \quad \mathbf{U} \in \mathbb{R}^{2 \times 2}, \mathbf{c} \in \mathbb{R}^{2}$
- Element-wise nonlinear activation: $\mathbf{h}=\sigma(\mathbf{z})$;
- Rectified Linear Unit (ReLU): $\sigma(t)=\max \{t, 0\}$
- 2nd linear transformation: $\hat{y}=\langle\mathbf{h}, \mathbf{w}\rangle+b$

$$
\mathbf{U}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \mathbf{c}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
2 \\
-4
\end{array}\right], b=-1
$$

- $\mathbf{x}_{1}=(0,0) \Longrightarrow \mathbf{z}_{1}=(0,-1), \mathbf{h}_{1}=(0,0) \Longrightarrow \hat{y}_{1}=-1 \checkmark \mathrm{y}_{1}=-$
- $\mathbf{x}_{2}=(1,0) \Longrightarrow \mathbf{z}_{2}=(1,0), \mathbf{h}_{2}=(1,0) \Longrightarrow \hat{y}_{2}=+1 \checkmark \mathrm{y}_{2}=+$
- $\mathbf{x}_{3}=(0,1) \Longrightarrow \mathbf{z}_{3}=(1,0), \mathbf{h}_{3}=(1,0) \Longrightarrow \hat{y}_{3}=+1 \checkmark \mathrm{y}_{3}=+$
- $\mathbf{x}_{4}=(1,1) \Longrightarrow \mathbf{z}_{4}=(2,1), \mathbf{h}_{4}=(2,1) \Longrightarrow \hat{y}_{4}=-1 \checkmark \mathrm{y}_{4}=-$

Multi-Class Classification

$\underbrace{\mathbf{z}=\mathbf{U x}+\mathbf{c}, \quad \mathbf{h}=\sigma(\mathbf{z})}_{\text {learning feature } \mathbf{h}}, \quad \underbrace{\hat{\mathbf{y}}=\mathbf{W h}+\mathbf{b}, \quad \hat{\mathbf{p}}=\operatorname{softmax}(\hat{\mathbf{y}})}_{\text {learning linear classifier by logistic regression }}$
What if σ is linear? Say $\mathbf{h}=\sigma(\mathbf{z})=\mathbf{V} \mathbf{z}+\mathbf{a}$

Activation Function

$$
\operatorname{sgm}(t)=\frac{1}{1+\exp (-t)}
$$

$$
\tanh (t)=1-2 \operatorname{sgm}(2 t)
$$

Activation Function - Cont'

$$
\mathrm{relu}(t)=t_{+}
$$

$$
\mathrm{elu}(t)=(t)_{+}+(t)_{-}(\exp (t)-1)
$$

MLP Training - Even Deeper

 $$
\hat{\mathbf{p}}=f(\mathbf{x} ; \mathbf{w})
$$

- Need a loss ℓ to measure difference between prediction $\hat{\mathbf{p}}$ and truth y
- e.g., squared loss $\|\hat{\mathbf{p}}-\mathbf{y}\|_{2}^{2}$ (for regression, see Lecture 3) or log-loss $-\log \hat{p}_{\mathbf{y}}$ (for classification, see Lecture 4)
- Need a training set $\mathcal{D}=\left\{\left(\mathbf{x}_{i}, \mathrm{y}_{i}\right): i=1, \ldots, n\right\}$ to train weights \mathbf{w}

Stochastic Gradient Descent (SGD)

$$
\min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n}[\ell \circ f]\left(\mathbf{x}_{i}, \mathrm{y}_{i} ; \mathbf{w}\right)
$$

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \frac{1}{n} \sum_{i=1}^{n} \nabla[\ell \circ f]\left(\mathbf{x}_{i}, \mathbf{y}_{i} ; \mathbf{w}\right)
$$

- $[\ell \circ f]\left(\mathbf{x}_{i}, \mathbf{y}_{i} ; \mathbf{w}\right):=\ell\left[f\left(\mathbf{x}_{i} ; \mathbf{w}\right), \mathbf{y}_{i}\right]$
- Each iteration requires a full pass over the entire training set!
- A random, minibatch $B \subseteq\{1, \ldots, n\}$ suffices:

$$
\mathbf{w} \leftarrow \mathbf{w}-\eta \cdot \frac{1}{|B|} \sum_{i \in B} \nabla[\ell \circ f]\left(\mathbf{x}_{i}, \mathrm{y}_{i} ; \mathbf{w}\right)
$$

- Trade-off between variance and computation

Learning Rate Decay

- Decrease every few epochs: $\eta_{t}= \begin{cases}\eta_{0}, & t \leq t_{0} ; \\ \eta_{0} / 10, & t_{0}<t \leq t_{1} ; \\ \eta_{0} / 100, & t_{1}<t .\end{cases}$
- Sublinear decay: $\eta_{t}=\eta_{0} /(1+c t)$ or $\eta_{t}=\eta_{0} / \sqrt{1+c t}$

How to Compute the Gradient for Gradient Descent?

- The forward pass of a 2-layer MLP (k is the NN width, c is the output dim):

$$
\mathrm{x}=\operatorname{input}\left(\mathrm{x} \in \mathbb{R}^{d}\right)
$$

$$
\mathbf{z}=\mathbf{W} \mathbf{x}+\mathbf{b}_{1}\left(\mathbf{W} \in \mathbb{R}^{k \times d} \text { and } \mathbf{z}, \mathbf{b}_{1} \in \mathbb{R}^{k}\right)
$$

$$
\mathrm{h}=\operatorname{ReLU}(\mathbf{z})\left(\mathbf{h} \in \mathbb{R}^{k}\right)
$$

$$
\boldsymbol{\theta}=\mathbf{U h}+\mathbf{b}_{2}\left(\mathbf{U} \in \mathbb{R}^{c \times k} \text { and } \boldsymbol{\theta}, \mathbf{b}_{2} \in \mathbb{R}^{c}\right)
$$

$$
J=\frac{1}{2}\|\boldsymbol{\theta}-\mathbf{y}\|_{2}^{2}\left(\mathbf{y} \in \mathbb{R}^{c}\right)
$$

- The parameters to be learned: $\mathbf{W}, \mathbf{b}_{1}, \mathbf{U}, \mathbf{b}_{2}$
- Network's gradient: $\frac{\partial J}{\partial \mathrm{~W}}, \frac{\partial J}{\partial \mathrm{~b}_{1}}, \frac{\partial J}{\partial \mathrm{U}}, \frac{\partial J}{\partial \mathrm{~b}_{2}}$
- Recall that $\operatorname{ReLU}(x)=\max (x, 0)$. So

$$
\operatorname{ReLU}^{\prime}(x)= \begin{cases}1, & \text { if } x>0 \\ 0, & \text { otherwise }\end{cases}
$$

Matrix Calculus Basics

- Matrix calculus is complicated and cannot be taught clearly within 2-3 lectures (out of the scope of this course)!
- Definition: Let $y(\mathbf{X}) \in \mathbb{R}$ and $\mathbf{X}=\left[X_{i j}\right]_{i=1, j=1}^{m, n} \in \mathbb{R}^{m \times n}$. Then

$$
\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}
\frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1 n}} \\
\frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2 n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial y}{\partial X_{m 1}} & \frac{\partial y}{\partial X_{m 2}} & \cdots & \frac{\partial y}{\partial X_{m n}}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

- Best way to calculate matrix calculus: Analogous to your calculation of scalar calculus, you want to "guess" a solution with a matched dimensionality. Three steps:

1. "Guess" a solution analogous to scalar calculus;
2. Check if the dimension is right $\frac{\partial y}{\partial \mathbf{X}} \in \mathbb{R}^{m \times n}$ for $\mathbf{X} \in \mathbb{R}^{m \times n}$;
3. Return to Step 1 or Finish.

How to Compute the Gradient? Chain Rule!

- The forward pass of a 2-layer MLP (k is the NN width, c is the output dim):

$$
\begin{aligned}
& \mathbf{x}=\operatorname{input}\left(\mathbf{x} \in \mathbb{R}^{d \times 1}\right) \\
& \mathbf{z}=\mathbf{W x}+\mathbf{b}_{1}\left(\mathbf{W} \in \mathbb{R}^{k \times d} \text { and } \mathbf{z}, \mathbf{b}_{1} \in \mathbb{R}^{k \times 1}\right) \\
& \mathbf{h}=\operatorname{ReLU}(\mathbf{z})\left(\mathbf{h} \in \mathbb{R}^{k \times 1}\right) \\
& \boldsymbol{\theta}=\mathbf{U h}+\mathbf{b}_{2}\left(\mathbf{U} \in \mathbb{R}^{c \times k} \text { and } \boldsymbol{\theta}, \mathbf{b}_{2} \in \mathbb{R}^{c \times 1}\right) \\
& J=\frac{1}{2}\|\boldsymbol{\theta}-\mathbf{y}\|_{2}^{2}\left(\mathbf{y} \in \mathbb{R}^{c \times 1}\right)
\end{aligned}
$$

- The backward pass of the model (\odot is the Hadamard product):

$$
\begin{aligned}
& \frac{\partial J}{\partial \theta}=\boldsymbol{\theta}-\mathbf{y} \\
& \frac{\partial J}{\partial \mathrm{U}}=\frac{\partial J^{\partial \boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \circ \frac{\partial \boldsymbol{\theta}}{\partial \mathrm{U}}=(\boldsymbol{\theta}-\mathbf{y}) \mathbf{h}^{T} \\
& \frac{\partial J}{\partial \mathrm{~b}_{2}}=\frac{\partial J}{\partial \theta} \circ \frac{\partial \boldsymbol{\theta}}{\partial \mathrm{~b}_{2}}=\boldsymbol{\theta}-\mathbf{y} \\
& \frac{\partial J}{\partial \boldsymbol{h}}=\frac{\partial J}{\partial \boldsymbol{\theta}} \circ \frac{\partial \boldsymbol{\theta}}{\partial \mathbf{h}}=\mathbf{U}^{T}(\boldsymbol{\theta}-\mathbf{y}) \\
& \frac{\partial J}{\partial \mathbf{z}}=\frac{\partial \bar{h}}{\partial \mathrm{~h}} \circ \frac{\partial \mathrm{~h}}{\partial \mathbf{z}}=\mathbf{U}^{T}(\boldsymbol{\theta}-\mathbf{y}) \odot \operatorname{ReLU}^{\prime}(\mathbf{z}) \\
& \frac{\partial J}{\partial \mathbf{W}}=\frac{\partial J}{\partial \mathbf{z}} \circ \frac{\partial \mathbf{z}}{\partial \mathbf{W}}=\left(\mathbf{U}^{T}(\boldsymbol{\theta}-\mathbf{y}) \odot \operatorname{ReLU}^{\prime}(\mathbf{z})\right) \mathbf{x}^{T} \\
& \frac{\partial J}{\partial \mathbf{b}_{1}}=\frac{\partial J}{\partial \mathbf{z}} \circ \frac{\partial \mathbf{z}}{\partial \mathbf{b}_{1}}=\mathbf{U}^{T}(\boldsymbol{\theta}-\mathbf{y}) \odot \operatorname{ReLU}^{\prime}(\mathbf{z})
\end{aligned}
$$

How to Compute the Gradient? Chain Rule!

Existing frameworks will memorize the computational graph in the forward process and calculate the back-propagation automatically for you!

A Simple Example

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

A Simple Example (Forward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4 \\
& q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\end{aligned}
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } \mathrm{x}=-2, \mathrm{y}=5, \mathrm{z}=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
f(x, y, z)=(x+y) z
$$

$$
\text { e.g. } x=-2, y=5, z=-4
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li \& Andrej Karpathy \& Justin Johnson. Stanford University

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

A Simple Example (Backward)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Universal Approximation Theorem

Theorem: Universal Approximation Theorem by 2-Layer NNs

For any continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{c}$ and any $\epsilon>0$, there exists $k \in \mathbb{N}, \mathbf{W} \in \mathbb{R}^{k \times d}$, $\mathbf{b} \in \mathbb{R}^{k}, \mathbf{U} \in \mathbb{R}^{c \times k}$ such that

$$
\sup _{\mathbf{x}}\|f(\mathbf{x})-g(\mathbf{x})\|_{2}<\epsilon
$$

where $g(\mathbf{x})=\mathbf{U}(\sigma(\mathbf{W} \mathbf{x}+\mathbf{b}))$ and σ is the element-wise ReLU operation.

As long as 2-layer MLP is wide enough (a large k), it can approximate any continuous function arbitrarily closely.

[^0]
Then Why Deep Learning?

- There exists a function such that 2-layer MLP needs to be $k=\exp (1 / \epsilon)$ wide to approximate the function, but 3-layer MLP only needs to be $k=\operatorname{poly}(1 / \epsilon)$ wide.
- Deep NNs are more parameter-efficient.

[^1]
Dropout

- Training:
- For each training minibatch, keep each hidden unit with probability q
- A different and random network for each training minibatch
- Hidden units are less likely to collude to overfit training data
- Inverted: after the removal, multiply each \mathbf{h}_{k} with a scaling factor $1 / q$ to keep the same expectation
- Testing: Use the full network

N. Srivastava et al. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". Journal of Machine Learning Research, vol. 15, no. 56 (2014), pp. 1929-1958.

Batch Normalization

$$
\left.\left.\left.\begin{array}{rl}
\text { Input: Values of } x \text { over a mini-batch: } \mathcal{B}=\left\{x_{1 \ldots m}\right\} ; \\
& \text { Parameters to be learned: } \gamma, \beta \\
\text { Output: }\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\} & \\
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)
\end{array} \quad \text { // mini-batch variance }\right\} \text { // normalize }\right\} \text { // scale and shift }\right\}
$$

[^2]
Batch Normalization vs. Layer Normalization

Normalization across mini-batch, independently for each feature

Normalization across features, independently for each sample

A Complete MLP Architecture

OuBstions

[^0]: J.-P. Kahane. "Sur le theoreme de superposition de Kolmogorov". Journal of Approximation Theory, vol. 13, no. 3 (1975), pp. 229-234, A. N. Kolmogorov. "On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition". Soviet Mathematics Doklady, vol. 114, no. 5 (1957), pp. 953-956, V. I. Arnol'd. "On Functions of Three Variables". Soviet Mathematics Doklady, vol. 114, no. 4 (1957), pp. 679-681.

[^1]: "The Power of Depth for Feedforward Neural Networks" by Eldan and Shamir. 2016
 "Benefit of Depth in Neural Networks" by Telgarsky. 2016

[^2]: S. loffe and C. Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". In: Proceedings of the 32nd International Conference on Machine Learning ICML. vol. 37. 2015, pp. 448-456.

