
CS480/680: Introduction to Machine Learning
Lecture 9: Multilayer Perceptron (MLP)

Hongyang Zhang

Feb 8, 2024

XOR Recalled

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

• We have shown no linear classifier can separate the data.

1 / 32

Fixing the Problem

• A linear classifier in the input space underfits the XOR data

• Can fix input representation but use a richer model (e.g., a quadratic classifier)

• Can fix the classifier as linear but use a richer input representation (the power of
lifting)

• The two approaches are equivalent for certain classifiers, by a reproducing kernel

• Neural network: learn the feature map simultaneously with the linear classifier!

2 / 32

Multi-Layer Perception (MLP)

	

!"#
!#"

• 1st linear transformation: z = Ux+ c, U ∈ R2×2, c ∈ R2

• Element-wise nonlinear activation: h = σ(z)

• 2nd linear transformation: ŷ = ⟨h,w⟩+ b, w ∈ R2, b ∈ R
• Output layer: sign(ŷ) or sigmoid(ŷ)

• BLUE: parameters to be learned
3 / 32

Does It Work on XOR Dataset?

Consider a well-trained 2-layer NN:

• 1st linear transformation: z = Ux+ c, U ∈ R2×2, c ∈ R2

• Element-wise nonlinear activation: h = σ(z);
▶ Rectified Linear Unit (ReLU): σ(t) = max{t, 0}

• 2nd linear transformation: ŷ = ⟨h,w⟩+ b

U =

[
1 1
1 1

]
, c =

[
0
−1

]
,w =

[
2
−4

]
, b = −1

• x1 = (0, 0) =⇒ z1 = (0,−1),h1 = (0, 0) =⇒ ŷ1 = −1 ✓ y1 = −
• x2 = (1, 0) =⇒ z2 = (1, 0),h2 = (1, 0) =⇒ ŷ2 = +1 ✓ y2 = +

• x3 = (0, 1) =⇒ z3 = (1, 0),h3 = (1, 0) =⇒ ŷ3 = +1 ✓ y3 = +

• x4 = (1, 1) =⇒ z4 = (2, 1),h4 = (2, 1) =⇒ ŷ4 = −1 ✓ y4 = −
4 / 32

Multi-Class Classification

z = Ux+ c, h = σ(z)︸ ︷︷ ︸
learning feature h

, ŷ = Wh+ b, p̂ = softmax(ŷ)︸ ︷︷ ︸
learning linear classifier by logistic regression

What if σ is linear? Say h = σ(z) = Vz+ a 5 / 32

Activation Function

7 / 32

Activation Function — Cont’

8 / 32

MLP Training — Even Deeper

p̂ = f(x;w)

• Need a loss ℓ to measure difference between prediction p̂ and truth y
▶ e.g., squared loss ∥p̂− y∥22 (for regression, see Lecture 3) or log-loss − log p̂y (for

classification, see Lecture 4)

• Need a training set D = {(xi, yi) : i = 1, . . . , n} to train weights w
9 / 32

Stochastic Gradient Descent (SGD)

min
w

1

n

n∑
i=1

[ℓ ◦ f](xi, yi;w)

w← w − η · 1
n

n∑
i=1

∇[ℓ ◦ f](xi, yi;w)

• [ℓ ◦ f](xi, yi;w) := ℓ[f(xi;w), yi]

• Each iteration requires a full pass over the entire training set!

• A random, minibatch B ⊆ {1, . . . , n} suffices:

w← w − η · 1

|B|
∑
i∈B

∇[ℓ ◦ f](xi, yi;w)

• Trade-off between variance and computation
10 / 32

Learning Rate Decay

• Decrease every few epochs: ηt =

η0, t ≤ t0;

η0/10, t0 < t ≤ t1;

η0/100, t1 < t.

• Sublinear decay: ηt = η0/(1 + ct) or ηt = η0/
√
1 + ct

11 / 32

How to Compute the Gradient for Gradient Descent?
• The forward pass of a 2-layer MLP (k is the NN width, c is the output dim):
x = input (x ∈ Rd)
z = Wx+ b1 (W ∈ Rk×d and z,b1 ∈ Rk)
h = ReLU(z) (h ∈ Rk)
θ = Uh+ b2 (U ∈ Rc×k and θ,b2 ∈ Rc)
J = 1

2
∥θ − y∥22 (y ∈ Rc)

• The parameters to be learned: W, b1, U, b2

• Network’s gradient: ∂J
∂W

, ∂J
∂b1

, ∂J
∂U

, ∂J
∂b2

• Recall that ReLU(x) = max(x, 0). So

ReLU′(x) =

{
1, if x > 0;

0, otherwise.

12 / 32

Matrix Calculus Basics
• Matrix calculus is complicated and cannot be taught clearly within 2-3 lectures
(out of the scope of this course)!
• Definition: Let y(X) ∈ R and X = [Xij]

m,n
i=1,j=1 ∈ Rm×n. Then

∂y

∂X
=

∂y

∂X11

∂y
∂X12

· · · ∂y
∂X1n

∂y
∂X21

∂y
∂X22

· · · ∂y
∂X2n

...
...

...
∂y

∂Xm1

∂y
∂Xm2

· · · ∂y
∂Xmn

 ∈ Rm×n.

• Best way to calculate matrix calculus: Analogous to your calculation of scalar
calculus, you want to “guess” a solution with a matched dimensionality. Three
steps:
1. “Guess” a solution analogous to scalar calculus;
2. Check if the dimension is right ∂y

∂X ∈ Rm×n for X ∈ Rm×n;
3. Return to Step 1 or Finish.

13 / 32

How to Compute the Gradient? Chain Rule!
• The forward pass of a 2-layer MLP (k is the NN width, c is the output dim):
x = input (x ∈ Rd×1)
z = Wx+ b1 (W ∈ Rk×d and z,b1 ∈ Rk×1)
h = ReLU(z) (h ∈ Rk×1)
θ = Uh+ b2 (U ∈ Rc×k and θ,b2 ∈ Rc×1)
J = 1

2
∥θ − y∥22 (y ∈ Rc×1)

• The backward pass of the model (⊙ is the Hadamard product):
∂J
∂θ

= θ − y
∂J
∂U

= ∂J
∂θ
◦ ∂θ

∂U
= (θ − y)hT

∂J
∂b2

= ∂J
∂θ
◦ ∂θ

∂b2
= θ − y

∂J
∂h

= ∂J
∂θ
◦ ∂θ

∂h
= UT (θ − y)

∂J
∂z

= ∂J
∂h
◦ ∂h

∂z
= UT (θ − y)⊙ ReLU′(z)

∂J
∂W

= ∂J
∂z
◦ ∂z

∂W
= (UT (θ − y)⊙ ReLU′(z))xT

∂J
∂b1

= ∂J
∂z
◦ ∂z

∂b1
= UT (θ − y)⊙ ReLU′(z)

14 / 32

How to Compute the Gradient? Chain Rule!

Existing frameworks will memorize the computational graph in the forward process and
calculate the back-propagation automatically for you!

15 / 32

A Simple Example

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

16 / 32

A Simple Example (Forward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

17 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

18 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

19 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

20 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

21 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

22 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

23 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

24 / 32

A Simple Example (Backward)

————————
Fei-Fei Li & Andrej Karpathy & Justin Johnson. Stanford University

25 / 32

Universal Approximation Theorem
Theorem: Universal Approximation Theorem by 2-Layer NNs

For any continuous function f : Rd → Rc and any ϵ > 0, there exists k ∈ N, W ∈ Rk×d,
b ∈ Rk, U ∈ Rc×k such that

sup
x
∥f(x)− g(x)∥2 < ϵ,

where g(x) = U(σ(Wx+ b)) and σ is the element-wise ReLU operation.

As long as 2-layer MLP is wide enough (a large k), it can approximate any continuous
function arbitrarily closely.
————————
J.-P. Kahane. “Sur le theoreme de superposition de Kolmogorov”. Journal of Approximation Theory, vol. 13, no. 3
(1975), pp. 229–234, A. N. Kolmogorov. “On the representation of continuous functions of many variables by
superposition of continuous functions of one variable and addition”. Soviet Mathematics Doklady, vol. 114, no. 5
(1957), pp. 953–956, V. I. Arnol’d. “On Functions of Three Variables”. Soviet Mathematics Doklady, vol. 114, no. 4
(1957), pp. 679–681. 26 / 32

Then Why Deep Learning?
• There exists a function such that 2-layer MLP needs to be k = exp(1/ϵ) wide to
approximate the function, but 3-layer MLP only needs to be k = poly(1/ϵ) wide.
• Deep NNs are more parameter-efficient.

————————
“The Power of Depth for Feedforward Neural Networks” by Eldan and Shamir. 2016
“Benefit of Depth in Neural Networks” by Telgarsky. 2016

27 / 32

Dropout
• Training:

▶ For each training minibatch, keep each hidden unit with probability q
▶ A different and random network for each training minibatch
▶ Hidden units are less likely to collude to overfit training data
▶ Inverted: after the removal, multiply each hk with a scaling factor 1/q to keep the

same expectation
• Testing: Use the full network

————————
N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. Journal of Machine
Learning Research, vol. 15, no. 56 (2014), pp. 1929–1958.

28 / 32

29 / 32

Batch Normalization

————————
S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift”. In: Proceedings of the 32nd International Conference on Machine Learning ICML. vol. 37. 2015, pp. 448–456.

30 / 32

Batch Normalization vs. Layer Normalization

31 / 32

A Complete MLP Architecture

32 / 32

