
CS480/680: Introduction to Machine Learning
Lecture 8: Gradient Descent

Hongyang Zhang

Feb 6, 2024

Optimization in Machine Learning
Many ML methods can be formulated as an optimization problem. Examples:
• Perceptron (Lecture 2):

min
w
− 1

n

n∑
i=1

yi ⟨w,xi⟩ I[mistake on xi]

• Logistic regression (Lecture 4):

min
w

n∑
i=1

log[1 + exp(−yi ⟨xi,w⟩)]

• SVM (Lecture 6):

min
w,b

1

2
∥w∥22 + C

n∑
i=1

(1− yi(⟨xi,w⟩+ b)))+

1 / 20

Gradient Descent

• Consider unconstrained optimization

min
x

f(x)

▶ Let’s assume f is differentiable with gradient ∇f(x)
▶ Denote optimal criterion value by f∗ = minx f(x), and a solution by

x∗ = argminx f(x)

• Gradient descent template: choose initial point x(0) ∈ Rd and repeat

x(k) = x(k−1) − t︸︷︷︸
step size

·∇f(x(k−1)), k = 1, 2, ...

2 / 20

Gradient Descent

Intuition: Negative gradient is the steepest decreasing direction at that point. So if the
step size is small and the function is convex, the algorithm will reach the minimizer.

3 / 20

An Example on Perceptron (Lecture 2)

min
w
− 1

n

n∑
i=1

yi ⟨w,xi⟩ I[mistake on xi]

• Gradient descent update:

w← w + t

[
1

n

n∑
i=1

yixiI[mistake on xi]

]

• (Stochastic) Gradient descent update:

w← w + tyIxII[mistake on xI]

for a random index I
4 / 20

An Example on Soft-Margin SVM (Lecture 6)

min
w,b

1

2
∥w∥22 + C

n∑
i=1

ℓhinge(yiŷi), s.t. ŷi = ⟨xi,w⟩+ b

• Gradient descent update:

w← w − t

[
w + C

n∑
i=1

ℓ′hinge(yiŷi)yixi

]

b← b− t

[
C

n∑
i=1

ℓ′hinge(yiŷi)yi

]

5 / 20

Interpretation from Taylor Expansion

Consider the Taylor expansion of f locally at x, where x is the current iterate1:

f(y)≈f(x) +∇f(x)T (y − x) +
1

2t
∥y − x∥22

Taking the miny operation at both sides:

min
y

f(y) ≈ min
y

[
f(x) +∇f(x)T (y − x) +

1

2t
∥y − x∥22

]
Choose next point y = x+ to minimize the right hand side:

x+ = x− t∇f(x)

1The approximation holds only when y → x for a fixed t; the remainder term is informal.
6 / 20

Interpretation from Taylor Expansion

!(#)

#(%) #(&) #(')

(%(#)

(&(#)
('(#)

#

Circle point • is x, cross point x is

x(i+1) = argmin
y

f(x(i)) +∇f(x(i))T (y − x) +
1

2t
∥y − x(i)∥22︸ ︷︷ ︸

gi(y)

7 / 20

Step size cannot be too large
• Diverge if t is too large.

• Consider f(x) = (10x2
1 + x2

2)/2. Gradient descent after 8 steps:

8 / 20

Step size cannot be too small

• Can be too slow if t is too small.

• Consider f(x) = (10x2
1 + x2

2)/2. Gradient descent:

9 / 20

“Just right” step size

• Converge nicely when t is “just right”.

• Consider f(x) = (10x2
1 + x2

2)/2. Gradient descent after 40 steps:

10 / 20

Convex Function

Function f is convex: For any x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)T (y − x)

11 / 20

Convergence Analysis for Convex Case
Assume that f is convex and differentiable, with dom(f) = Rd, and additionally that
∇f is L-Lipschitz continuous (a.k.a. f is L-smooth):

LI−∇2f(x)

is positive semi-definite for every x (denoted by LI ⪰ ∇2f(x)).

Theorem: Convergence rate for convex case

Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f ∗ ≤ ∥x
(0) − x∗∥22
2tk

.

We say gradient descent has convergence rate O(1/k). That is, a bound of
f(x(k))− f(x∗) ≤ ϵ can be achieved using only O(1/ϵ) iterations.

12 / 20

Proof
For any y, perform a quadratic expansion and obtain (by mean-value theorem):

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
L∥y − x∥22 (because LI ⪰ ∇2f(x))

Plug in y = x+ := x− t∇f(x):

f(x+) ≤ f(x) +∇f(x)T (x+ − x) +
1

2
L∥x+ − x∥22

= f(x) +∇f(x)T (x− t∇f(x)− x) +
1

2
L∥x− t∇f(x)− x∥22

= f(x)−
(
1− 1

2
Lt

)
t∥∇f(x)∥22

≤ f(x)− 1

2
t∥∇f(x)∥22 (because t ≤ 1/L)

(1)

That is, each update decreases the function value by at least 1
2
t∥∇f(x)∥22!

13 / 20

Proof — Cont’
Function f is convex:

f(x∗) ≥ f(x) +∇f(x)T (x∗ − x)⇒ f(x) ≤ f(x∗) +∇f(x)T (x− x∗)

Plugging in (1), we obtain:

f(x+) ≤ f(x∗) +∇f(x)T (x− x∗)− t

2
∥∇f(x)∥22

⇒f(x+)− f(x∗) ≤ 1

2t

(
2t∇f(x)T (x− x∗)− t2∥∇f(x)∥22

)
⇒f(x+)− f(x∗) ≤ 1

2t

(
2t∇f(x)T (x− x∗)− t2∥∇f(x)∥22 − ∥x− x∗∥22 + ∥x− x∗∥22

)
⇒f(x+)− f(x∗) ≤ 1

2t

(
∥x− x∗∥22 − ∥x− t∇f(x)− x∗∥22

)
⇒f(x+)− f(x∗) ≤ 1

2t

(
∥x− x∗∥22 − ∥x+ − x∗∥22

)
14 / 20

Proof — Cont’
Summing over iterations:

k∑
i=1

(f(x(i))− f(x∗)) ≤
k∑

i=1

1

2t

(
∥x(i−1) − x∗∥22 − ∥x(i) − x∗∥22

)
=

1

2t

(
∥x(0) − x∗∥22 − ∥x(k) − x∗∥22

)
≤ 1

2t
∥x(0) − x∗∥22,

which implies

f(x(k)) ≤ 1

k

k∑
i=1

f(x(i)) ≤ f(x∗) +
∥x(0) − x∗∥22

2tk
.

The first inequality holds because f(x(i)) is decreasing with the increase of i. Q.E.D.
15 / 20

Convergence Analysis for Strong Convexity

m-strong convexity of f means f(x)−m∥x∥22 is convex: LI ⪰ ∇2f(x) ⪰ mI.

Theorem: Convergence rate for strong convexity

Let f be differentiable, m-strongly convex, and L-smooth. Gradient descent with fixed
step size t ≤ 2/(m+ L) satisfies

f(x(k))− f ∗ ≤ γkL

2
∥x(0) − x∗∥22,

where 0 < γ < 1.

Rate under strong convexity is O(γk), exponentially fast! That is, a bound of
f(x(k))− f(x∗) ≤ ϵ can be achieved using only O(log1/γ(1/ϵ)) iterations.

16 / 20

Gradient descent for Nonconvex Case

Asking for optimality is too much. Let’s focus on ∥∇f(x)∥2 ≤ ϵ.
17 / 20

Convergence Analysis for Nonconvex Case

Assume f is differentiable and L-smooth, now nonconvex.

Theorem: Convergence rate for nonconvex case

Gradient descent with fixed step size t ≤ 1/L satisfies

min
i=0,...,k

∥∇f(x(i))∥2 ≤

√
2(f(x(0))− f ∗)

t(k + 1)

Thus gradient descent has rate O(1/
√
k), even in the nonconvex case for finding

stationary points.
This rate cannot be improved by any deterministic algorithm.

18 / 20

Stochastic Gradient Descent
• Consider decomposable optimization (n is very large)

min
w

1

n

n∑
i=1

fi(w)

▶ For example, fi(w) = ℓ(w;xi, yi) = −yi ⟨w,xi⟩ I[mistake on xi]
▶ Let’s assume fi is differentiable with gradient ∇fi(w)

• Gradient descent:

w+ = w − t · 1
n

n∑
i=1

∇fi(w)

• Stochastic gradient descent: (the same expectation)

w+ = w − t · ∇fI(w)

where I is a (uniformly) random index
19 / 20

Stochastic Gradient Descent — Convergence Rate
For convex and L-smooth fi (in the k-th iteration):
• Gradient descent:

w+ = w − t · 1
n

n∑
i=1

∇fi(w)

▶ Step size t ≤ 1/L
▶ Time complexity: O(nϵ)

• Stochastic gradient descent:

w+ = w − t · ∇fI(w)

where I is a random index
▶ Step size t = 1/k for k = 1, 2, 3, ...
▶ Time complexity: O(1

ϵ2
)

▶ Randomness leads to large variance of estimation of gradient. Thus SGD requires
more iterations (though each iteration needs less computations)

20 / 20

