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Optimization in Machine Learning
Many ML methods can be formulated as an optimization problem. Examples:
® Perceptron (Lecture 2):

L&
mvin - ; yi (W, x;) [[mistake on x;]
e Logistic regression (Lecture 4):
ain 3 log{1 + exp(—y; (x.,w)
i=1

e SVM (Lecture 6):

min L[l + 0301~y w) + )"
i=1
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Gradient Descent

e Consider unconstrained optimization

min /(2

> Let's assume f is differentiable with gradient V f(x)
» Denote optimal criterion value by f* = min, f(z), and a solution by
x* = argmin, f(x)

e Gradient descent template: choose initial point (9 € R% and repeat

g™ =20 ¢ wEEY), k=12, ..
~—

step size
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Gradient Descent

Initial

Weight r Gradient
Cost \ l' /

Incremental

Step ﬁ
\ /
/ Wi

Minimum Cost
Derivative of Cost /

>
>

Weight

Intuition: Negative gradient is the steepest decreasing direction at that point. So if the
step size is small and the function is convex, the algorithm will reach the minimizer.
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An Example on Perceptron (Lecture 2)

n

: 1 .
min —~ Zl yi (W, x;) [[mistake on x;]

® Gradient descent update:

1 n
W Wt | — ;X;[[mistake on x;
- ;y [ ]

® (Stochastic) Gradient descent update:

w < w + ty;x;I[mistake on x;

for a random index [
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An Example on Soft-Margin SVM (Lecture 6)

1 - i A
s §||W||§ + Ozghinge(yiyi)v st 9= (x5, w)+b

i=1

® Gradient descent update:

W<—w-—1

w+C Z aﬁnge (yzgz)yzxz]

i=1

b+b—1t

C Z aﬁnge (yzyl)yZ]
=1
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Interpretation from Taylor Expansion

Consider the Taylor expansion of f locally at z, where z is the current iterate:
T 1 2
Fly)=fz) + V@) (y =)+ o lly — ]
Taking the min, operation at both sides:
. . T 1 2
min f(y) ~ min | /(@) + V()" y — ) + 1y ol

Choose next point y = 2 to minimize the right hand side:

=2 —tVf(x)

1The approximation holds only when y — x for a fixed ¢; the remainder term is informal.
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Interpretation from Taylor Expansion
go(x)

£(© e e X

Circle point e is x, cross point x is

. . . 1
20 = argmin f(z7) + V()T (y — 2) + S llv = =93

Y N

-~

9:(y)
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Step size cannot be too large

® Diverge if t is too large.

e Consider f(z) = (102? 4+ x3)/2. Gradient descent after 8 steps:
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Step size cannot be too small

® Can be too slow if ¢ is too small.
e Consider f(z) = (1027 + x3)/2. Gradient descent:
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“Just right” step size

® Converge nicely when ¢ is “just right”.
e Consider f(z) = (102% + x3)/2. Gradient descent after 40 steps:
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Convex Function

{ (4)

Po)wi 0 (9-x)

Function f is convex: For any z,y € R,

fy) > f(@)+ V(@) (y—x)
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Convergence Analysis for Convex Case

Assume that f is convex and differentiable, with dom(f) = R?, and additionally that
V fis L-Lipschitz continuous (a.k.a. f is L-smooth):

LI — V% f(z)
is positive semi-definite for every x (denoted by LI = V?f(z)).
Theorem: Convergence rate for convex case
Gradient descent with fixed step size ¢ < 1/L satisfies

0) _ .x||2

(k)Y _ f* < |z z*||3
We say gradient descent has convergence rate O(1/k). That is, a bound of
f(z®) — f(2*) < € can be achieved using only O(1/e) iterations.
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Proof

For any y, perform a quadratic expansion and obtain (by mean-value theorem):
F() < () + V5@ (y — ) + 5 Llly — all} (because LT = V£ ()
Pluginy =a2" =2 — tVf(x):
Fla*) < fla) + V@) (@ —a) + Sl — 3
= () + VI (@) (2 ~ 191 (x) ~2) + 5 Lllz ~ 1V ()
~ f) - (1 3t ) AV IR
< f() = IV (because t < 1/1)

That is, each update decreases the function value by at least 3t||V f(z)][3!
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Proof — Cont’

Function f is convex:

f@) > f(a) + V(@) (2" —2) = flx) < f(z") + V(@) (2 —27)
Plugging in (1), we obtain:

Fat) < 1) + V@) (@ - a) ~ 9@
I~ @) < o (V@) (@~ a?) ~ 2]V )]R)
= f(5%) = f7) € 52 (V@) (@ = 2%) =PIV F@IE — e — " + o = °]B)
= 1) = J@") < o (e = 2l — e = 09/ (@) — °]B)
= 1) = @) < o (Il - =" [B — 2" — 2 [B)
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Proof — Cont’

Summing over iterations:

(2D =23 — |2

=
&/\
|
=
8
*
VAN
(]~
S

~
Il
—
<.
Il
—

1 *
=5 ([ = 2*[|3 = [l=® — 2™|13)
1 *
< o lle® — 2|3,
which implies
k
1 = — 2|13
E; SRR

The first inequality holds because f(z(") is decreasing with the increase of i. Q.E.D.

—"[3)
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Convergence Analysis for Strong Convexity

m-strong convexity of f means f(z) — m||z||3 is convex: LI = V2f(x) = ml.
Theorem: Convergence rate for strong convexity

Let f be differentiable, m-strongly convex, and L-smooth. Gradient descent with fixed
step size t < 2/(m + L) satisfies

L
Fa®) = f* <A@ - o),
where 0 < v < 1.

Rate under strong convexity is O(7*), exponentially fast! That is, a bound of
f(z®) — f(2*) < € can be achieved using only O(logy /,(1/€)) iterations.
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Gradient descent for Nonconvex Case

E(A)

Local Minimum

o
Qd

A

Asking for optimality is too much. Let’s focus on ||V f(z)]|2 < e.
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Convergence Analysis for Nonconvex Case

Assume f is differentiable and L-smooth, now nonconvex.
Theorem: Convergence rate for nonconvex case

Gradient descent with fixed step size ¢ < 1/L satisfies

2f(@©) - f°)
tk+1)

¢ (%) <
i [[VF(@)]. < \/

Thus gradient descent has rate O(1/+v/k), even in the nonconvex case for finding
stationary points.
This rate cannot be improved by any deterministic algorithm.
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Stochastic Gradient Descent

e Consider decomposable optimization (n is very large)

S
min — Z filw
i=1
» For example, f;(w) = £(w;x;,y;) = —y; (W, x;) [[mistake on x;]

> Let's assume f; is differentiable with gradient V f;(w)
® Gradient descent:

wh=w—t- Z V fi(w
e Stochastic gradient descent: (the same expectation)

wh=w—1t -Vfi(w)

where [ is a (uniformly) random index
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Stochastic Gradient Descent — Convergence Rate

For convex and L-smooth f; (in the k-th iteration):
® Gradient descent:

whi=w—t- ZVfZ

> Stepsizet <1/L
» Time complexity: O(%)
® Stochastic gradient descent:

wh=w—1t -Vfi(w)
where [ is a random index
» Stepsizet =1/k for k=1,2,3,...
» Time complexity: O(}Z)
» Randomness leads to large variance of estimation of gradient. Thus SGD requires
more iterations (though each iteration needs less computations)
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