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XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + –

• We have proved that linear classifier cannot separate the data

• Need more complex (non-linear) score function, e.g., a quadratic classifier
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Quadratic Classifier

f(x) = ⟨x, Qx⟩+
√
2 ⟨x,p⟩+ b

• Predict as before ŷ = sign(f(x)), x is a column vector in Rd

• Weights to be learned: Q ∈ Rd×d, p ∈ Rd, b ∈ R
• Setting Q = 0 reduces to the linear case
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The Power of Lifting

f(x) = ⟨x, Qx⟩+
√
2 ⟨x,p⟩+ b

=
〈
xx⊤, Q

〉
+
〈√

2x,p
〉
+ b

= ⟨ϕ(x),w⟩ (no bias term here)

• For any matrix A ∈ Rm×n, let
−→
A be the vectorization operation: Rm×n → Rmn

• Feature map ϕ(x) =


−−→
xx⊤
√
2x
1

, where x ∈ Rd 7→ ϕ(x) ∈ Rd×d+d+1

• Weights to be learned: w =

−→Qp
b

 ∈ Rd×d+d+1

• Nonlinear in x but linear in ϕ(x): ϕ must be nonlinear w.r.t. x
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From Nonlinear to Linear

• In the high-dimensional space, the data are linearly separable by a hyperplane.
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The Kernel Trick

• Feature map ϕ : Rd → R
d× d+ d+ 1 blows up the dimension

• Do we have to operate in the high-dimensional feature space, explicitly?

• In the dual form of SVM, all we need is the inner product!

⟨ϕ(x), ϕ(z)⟩ =

〈
−−→
xx⊤
√
2x
1

 ,


−−→
zz⊤√
2z
1

〉 = (⟨x, z⟩)2 + 2 ⟨x, z⟩+ 1

= (⟨x, z⟩+ 1)2

• Inner product in the high-dim space can be computed by the original vectors

• Which can still be computed in O(d) time!
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Reverse Engineering

• Given feature map ϕ : X → H, the resulting inner product

⟨ϕ(x), ϕ(z)⟩ =: k(x, z)

can be computed (e.g., k(x, z) = (⟨x, z⟩+ 1)2)

• Conversely, given k : X × X → R, does there exist ϕ : X → H such that

⟨ϕ(x), ϕ(z)⟩ = k(x, z)?
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(Reproducing) Kernels

Definition: (Reproducing) Kernels

We call k : X ×X → R a (reproducing) kernel iff there exists some ϕ : X → H so that
⟨ϕ(x), ϕ(z)⟩ = k(x, z).

• Choosing a feature transform ϕ determines the corresponding kernel k
• Choosing a kernel k determines some feature transform ϕ too

▶ may not be unique
▶ ϕ(x) := [x21,

√
2x1x2, x

2
2,
√
2x1,

√
2x2, 1] ∈ R6

▶ ψ(x) := [x21, x1x2, x1x2, x
2
2,
√
2x1,

√
2x2, 1] ∈ R7

▶ ⟨ϕ(x), ϕ(z)⟩ = ⟨ψ(x), ψ(z)⟩ for any x ∈ R2 and z ∈ R2

————————
N. Aronszajn (1950). “Theory of Reproducing Kernels”. Transactions of the American Mathematical Society, vol. 68,
no. 3, pp. 337–404.
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Verifying a Kernel

Theorem: Mercer’s theorem

k : X ×X → R is a kernel iff for any n ∈ N, for any x1, . . . ,xn ∈ X , the kernel matrix
K such that Kij := k(xi,xj) is symmetric and PSD.

• Symmetric: Kij = Kji

• Positive Semi-Definite (PSD): for any α ∈ Rn,

⟨α, Kα⟩ =
n∑

i=1

n∑
j=1

αiαjKij ≥ 0.
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Examples

• Polynomial kernel: k(x, z) = (⟨x, z⟩+ 1)p

▶ p is a hyper-parameter
▶ larger p → higher-degree polynomial mapping ϕ

• Gaussian kernel: k(x, z) = exp(−∥x− z∥22/σ)
• Laplace kernel: k(x, z) = exp(−∥x− z∥2/σ)

▶ σ is a hyper-parameter
▶ larger σ → smooth ϕ: ϕ(x1) and ϕ(x2) will not differ too much for close x1 and x2
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Kernel SVM

min
w

1
2
∥w∥22 + C

n∑
i=1

(1− yiŷi)
+

s.t. ŷi = ⟨xi,w⟩ , ∀i

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩

s.t.
∑
i

αiyi = 0

min
w

1
2
∥w∥22 + C

n∑
i=1

(1− yiŷi)
+

s.t. ŷi = ⟨ϕ(xi),w⟩ ,∀i

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyjk(xi,xj)

s.t.
∑
i

αiyi = 0
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Prediction

• Solve α∗ ∈ Rn, and recover

w∗ =
n∑

i=1

α∗
i yiϕ(xi)

• But we do not know ϕ, so we cannot compute w∗ explicitly

• For testing, only need to compute the sign of:

f(x) := ⟨ϕ(x),w∗⟩ =

〈
ϕ(x),

n∑
i=1

α∗
i yiϕ(xi)

〉
=

n∑
i=1

α∗
i yik(x,xi)

• Knowing the dual vector α∗, training set {xi, yi} and the kernel k suffices for
getting the score function of the test data x!
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An Example on XOR Dataset

We have proved the dataset is non-linearly separable. Consider non-linear mapping:

k(x, z) = (⟨x, z⟩+ 1)2
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An Example on XOR Dataset

min
α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyjk(xi,xj)

s.t.
∑
i

αiyi = 0

Let the derivative of objective = 0, we get
−1

1
−1

1



9 1 1 1
1 9 1 1
1 1 9 1
1 1 1 9


︸ ︷︷ ︸

K


−1

1
−1

1



α1

α2

α3

α4

 =


1
1
1
1
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An Example on XOR Dataset

α1 = α2 = α3 = α4 =
1
8
, which happens to satisfy

∑
i

αiyi = 0.

f(x) = ⟨ϕ(x),w⟩ =
∑
i

αiyik(x,xi) = −x1x2
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