CS480/680: Introduction to Machine Learning
Lecture 7: Reproducing Kernels

Hongyang Zhang

Feb 1, 2024

XOR Dataset

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
	0	1	0	1
	0	0	1	1
\mathbf{y}	-	+	+	-

- We have proved that linear classifier cannot separate the data
- Need more complex (non-linear) score function, e.g., a quadratic classifier

Quadratic Classifier

$$
f(\mathbf{x})=\langle\mathbf{x}, Q \mathbf{x}\rangle+\sqrt{2}\langle\mathbf{x}, \mathbf{p}\rangle+b
$$

- Predict as before $\hat{\mathbf{y}}=\operatorname{sign}(f(\mathbf{x}))$, \mathbf{x} is a column vector in \mathbb{R}^{d}
- Weights to be learned: $Q \in \mathbb{R}^{d \times d}, \mathbf{p} \in \mathbb{R}^{d}, b \in \mathbb{R}$
- Setting $Q=\mathbf{0}$ reduces to the linear case

The Power of Lifting

$$
\begin{aligned}
f(\mathbf{x}) & =\langle\mathbf{x}, Q \mathbf{x}\rangle+\sqrt{2}\langle\mathbf{x}, \mathbf{p}\rangle+b \\
& =\left\langle\mathbf{x} \mathbf{x}^{\top}, Q\right\rangle+\langle\sqrt{2} \mathbf{x}, \mathbf{p}\rangle+b \\
& =\langle\phi(\mathbf{x}), \mathbf{w}\rangle \quad \text { (no bias term here) }
\end{aligned}
$$

- For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, let $\overrightarrow{\mathbf{A}}$ be the vectorization operation: $\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m n}$
- Feature map $\phi(\mathbf{x})=\left[\begin{array}{c}\overrightarrow{\mathbf{x}} \overrightarrow{ }{ }^{\dagger} \\ \sqrt{2} \mathbf{x} \\ 1\end{array}\right]$, where $\mathbf{x} \in \mathbb{R}^{d} \mapsto \phi(\mathbf{x}) \in \mathbb{R}^{d \times d+d+1}$
- Weights to be learned: $\mathbf{w}=\left[\begin{array}{l}\vec{Q} \\ \mathbf{p} \\ b\end{array}\right] \in \mathbb{R}^{d \times d+d+1}$
- Nonlinear in x but linear in $\phi(\mathrm{x})$: ϕ must be nonlinear w.r.t. x

From Nonlinear to Linear

- In the high-dimensional space, the data are linearly separable by a hyperplane.

The Kernel Trick

- Feature map $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R} \sqrt{d \times d+d+1}$ blows up the dimension
- Do we have to operate in the high-dimensional feature space, explicitly?
- In the dual form of SVM, all we need is the inner product!

$$
\begin{aligned}
\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle & =\left\langle\left[\begin{array}{c}
\overrightarrow{\mathbf{x} \mathbf{x}^{\dagger}} \\
\sqrt{2} \mathbf{x} \\
1
\end{array}\right],\left[\begin{array}{c}
\overrightarrow{\mathbf{z z}} \\
\sqrt{2}_{\mathbf{z}} \\
1
\end{array}\right]\right\rangle=(\langle\mathbf{x}, \mathbf{z}\rangle)^{2}+2\langle\mathbf{x}, \mathbf{z}\rangle+1 \\
& =(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{2}
\end{aligned}
$$

- Inner product in the high-dim space can be computed by the original vectors
- Which can still be computed in $O(d)$ time!

Reverse Engineering

- Given feature map $\phi: \mathcal{X} \rightarrow \mathcal{H}$, the resulting inner product

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle=: k(\mathbf{x}, \mathbf{z})
$$

can be computed (e.g., $\left.k(\mathbf{x}, \mathbf{z})=(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{2}\right)$

- Conversely, given $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, does there exist $\phi: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle=k(\mathbf{x}, \mathbf{z}) ?
$$

(Reproducing) Kernels

Definition: (Reproducing) Kernels

We call $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ a (reproducing) kernel iff there exists some $\phi: \mathcal{X} \rightarrow \mathcal{H}$ so that $\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle=k(\mathbf{x}, \mathbf{z})$.

- Choosing a feature transform ϕ determines the corresponding kernel k
- Choosing a kernel k determines some feature transform ϕ too
- may not be unique
- $\phi(\mathbf{x}):=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right] \in \mathbb{R}^{6}$
- $\psi(\mathbf{x}):=\left[x_{1}^{2}, x_{1} x_{2}, x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right] \in \mathbb{R}^{7}$
- $\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle=\langle\psi(\mathbf{x}), \psi(\mathbf{z})\rangle$ for any $\mathbf{x} \in \mathbb{R}^{2}$ and $\mathbf{z} \in \mathbb{R}^{2}$
N. Aronszajn (1950). "Theory of Reproducing Kernels". Transactions of the American Mathematical Society, vol. 68, no. 3, pp. 337-404.

Verifying a Kernel

Theorem: Mercer's theorem

$k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel iff for any $n \in \mathbb{N}$, for any $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathcal{X}$, the kernel matrix K such that $K_{i j}:=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is symmetric and PSD.

- Symmetric: $K_{i j}=K_{j i}$
- Positive Semi-Definite (PSD): for any $\boldsymbol{\alpha} \in \mathbb{R}^{n}$,

$$
\langle\boldsymbol{\alpha}, K \boldsymbol{\alpha}\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{i j} \geq 0 .
$$

Examples

- Polynomial kernel: $k(\mathbf{x}, \mathbf{z})=(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{p}$
- p is a hyper-parameter
- larger $p \rightarrow$ higher-degree polynomial mapping ϕ
- Gaussian kernel: $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma\right)$
- Laplace kernel: $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2} / \sigma\right)$
- σ is a hyper-parameter
- larger $\sigma \rightarrow$ smooth $\phi: \phi\left(\mathbf{x}_{1}\right)$ and $\phi\left(\mathbf{x}_{2}\right)$ will not differ too much for close \mathbf{x}_{1} and \mathbf{x}_{2}

Kernel SVM

$$
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{n}\left(1-\mathrm{y}_{i} \hat{y}_{i}\right)^{+}
$$

$$
\text { s.t. } \hat{y}_{i}=\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle, \forall i
$$

$$
\begin{aligned}
\min _{C \geq \alpha \geq 0} & -\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \widehat{\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle} \\
\text { s.t. } & \sum_{i} \alpha_{i} \mathrm{y}_{i}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\min _{\mathbf{w}} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{n}\left(1-\mathrm{y}_{i} \hat{y}_{i}\right)^{+} \\
\text {s.t. } & \hat{y}_{i}=\left\langle\phi\left(\mathbf{x}_{i}\right), \mathbf{w}\right\rangle, \forall i
\end{array}
$$

$$
\min _{C \geq \alpha \geq 0}-\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

Prediction

- Solve $\boldsymbol{\alpha}^{*} \in \mathbb{R}^{n}$, and recover

$$
\mathbf{w}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} \mathbf{y}_{i} \phi\left(\mathbf{x}_{i}\right)
$$

- But we do not know ϕ, so we cannot compute \mathbf{w}^{*} explicitly
- For testing, only need to compute the sign of:

$$
f(\mathbf{x}):=\left\langle\phi(\mathbf{x}), \mathbf{w}^{*}\right\rangle=\left\langle\phi(\mathbf{x}), \sum_{i=1}^{n} \alpha_{i}^{*} \mathbf{y}_{i} \phi\left(\mathbf{x}_{i}\right)\right\rangle=\sum_{i=1}^{n} \alpha_{i}^{*} \mathbf{y}_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

- Knowing the dual vector $\boldsymbol{\alpha}^{*}$, training set $\left\{\mathbf{x}_{i}, \mathrm{y}_{i}\right\}$ and the kernel k suffices for getting the score function of the test data \mathbf{x} !

An Example on XOR Dataset

We have proved the dataset is non-linearly separable. Consider non-linear mapping:

$$
k(\mathbf{x}, \mathbf{z})=(\langle\mathbf{x}, \mathbf{z}\rangle+1)^{2}
$$

An Example on XOR Dataset

$$
\begin{aligned}
& \min _{\alpha \geq 0}-\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
& \text { s.t. } \quad \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

Let the derivative of objective $=0$, we get

An Example on XOR Dataset

$$
\begin{aligned}
\alpha_{1} & =\alpha_{2}=\alpha_{3}=\alpha_{4}=\frac{1}{8}, \text { which happens to satisfy } \sum_{i} \alpha_{i} y_{i}=0 \\
f(\mathbf{x}) & =\langle\phi(\mathbf{x}), \mathbf{w}\rangle=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)=-x_{1} x_{2}
\end{aligned}
$$

OuBstions

