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Hard-Margin SVM Recap

min
w,b

1
2
∥w∥22 s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i

What if the data is not linearly separable? Penalize it in the loss!
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The Hinge Loss

	

0-1	loss
1

1 !!"

	

	

• Let y ∈ {−1,+1}; ŷ := ⟨x,w⟩+ b be the score; yŷ be the confidence

• We want to penalize y(⟨x,w⟩+ b) < 1, i.e., small or negative yŷ

• Let’s use ℓhinge(yŷ) = (1− yŷ)+ =

{
1− yŷ, if yŷ < 1;

0, otherwise.
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The points on which the classifier is penalized

Penalize yŷ < 1 with two cases:

• 0 ≤ yŷ < 1: points that are classified correctly but close to boundary

• yŷ < 0: mis-classified points
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Soft-Margin SVM

• Balancing between margin maximization and the hinge loss:

min
w,b

1
2
∥w∥22 + C ·

∑
i (1− yiŷi)

+︸ ︷︷ ︸
penalize error and small margin

, s.t. ŷi := ⟨xi,w⟩+ b
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Comparison
Hard-Margin SVM:

min
w,b

1
2
∥w∥22

s.t. ŷi = ⟨xi,w⟩+ b, ∀i
yiŷi ≥ 1,∀i

• Hard constraint: must respect

• A special case of soft-margin
SVM when C = +∞

Soft-Margin SVM

min
w,b

1
2
∥w∥22 + C ·

n∑
i=1

(1− yiŷi)
+

s.t. ŷi = ⟨xi,w⟩+ b,∀i

• Soft penalty: the more you
deviate, the heavier the penalty

• 1
2
∥w∥22: margin maximization

• (1− yiŷi)
+: error penalty

• C: hyper-parameter to control trade-off
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Why Hinge Loss?

0-1	loss
1

1 !!"

Our goal: minimize over w, b

Pr(Y ̸= sign(Ŷ)) = Pr(YŶ ≤ 0) = E I[YŶ ≤ 0]︸ ︷︷ ︸
indicator function

:= Eℓ0−1(YŶ),

where Ŷ = ⟨X,w⟩+ b, Y = −1 or + 1
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Why Hinge Loss? — Cont’
• Our goal: minimizeŶ:X→R Eℓ0−1(YŶ) = EXEY|X[ℓ0−1(YŶ)] (1)
• Even with linear predictors, minimizing the above 0-1 error is NP-hard

▶ The loss is not continuous at 0
▶ The gradient of the loss is 0 almost surely

• Therefore, we need to consider a surrogate loss, e.g., the hinge loss

Definition: Bayes rule

Given an instance x, the Bayes rule is given by η(x) := argminŷ∈R EY|X=x[ℓ0−1(Yŷ)].

Ŷ = η(X) minimizes (1), as it minimizes the inner expectation in (1).

————————
A. L. Blum and R. L. Rivest (1992). “Training a 3-node neural network is NP-complete”. Neural Networks, vol. 5, no.
1, pp. 117–127; S. Ben-David et al. (2003). “On the difficulty of approximately maximizing agreements”. Journal of
Computer and System Sciences, vol. 66, no. 3, pp. 496–514.
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Why Hinge Loss? — Cont’

Definition: Bayes rule

Given an instance x, the Bayes rule is given by η(x) := argminŷ∈R EY|X=x[ℓ0−1(Yŷ)].

Definition: Classification calibrated

We say a loss ℓ(yŷ) is classification-calibrated, iff for all x,

ŷ(x) := argmin
ŷ∈R

EY|X=x[ℓ(Yŷ)]

has the same sign as the Bayes rule η(x) = argminŷ∈R EY|X=x[ℓ0−1(Yŷ)].

• Note that η(x) and ŷ(x) provide the score, but not the prediction. Their sign
operation provides the prediction.
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Why Hinge Loss? — Cont’
Theorem: Characterization under convexity

Any convex loss ℓ is classification-calibrated iff ℓ is differentiable at 0 and ℓ′(0) < 0. So,
the classifier that minimizes the expected hinge loss minimizes the expected 0-1 loss.

ℓperceptron(yŷ) = −min{yŷ, 0} is NOT classification-calibrated; non-differentiable at 0.
————————
P. L. Bartlett et al. (2006). “Convexity, Classification, and Risk Bounds”. Journal of the American Statistical
Association, vol. 101, no. 473, pp. 138–156.
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Lagrangian Dual
• Recall soft-margin SVM: minw,b

1
2
∥w∥22 + C ·

∑n
i=1(1− yi(⟨xi,w⟩+ b))+

• Apply C · (t)+ := max{Ct, 0} = max0≤α≤C αt:

min
w,b

max
0≤α≤C

1
2
∥w∥22 +

∑
i αi[1− yi(⟨xi,w⟩+ b)]

• Swap min with max:

max
0≤α≤C

min
w,b

1
2
∥w∥22 +

∑
i αi[1− yi(⟨xi,w⟩+ b)]

• Solving the inner unconstrained problem by setting derivative to 0:

∂

∂w
= w −

∑
i

αiyixi = 0,
∂

∂b
= −

∑
i

αiyi = 0
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Lagrangian Dual — Cont’

• Plug in back to eliminate the inner problem (of w and b):

max
0≤α≤C

∑
i

αi − 1
2
∥
∑

i αiyixi∥22 s.t.
∑

i αiyi = 0

• Changing max to min and expanding the norm:

min
0≤α≤C

1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩ −

∑
i αi s.t.

∑
i αiyi = 0

• What happens if C →∞? Hard-margin SVM! (Soft → Hard Constraint)

• What happens if C → 0? A constant classifier! (Dual: α∗ = 0; Primal: w∗ = 0)
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Comparison

Hard-margin SVM:

min
w,b

1
2
∥w∥22

s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i

min
α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩

s.t.
∑
i

αiyi = 0

Soft-margin SVM:

min
w,b

1
2
∥w∥22 + C

n∑
i=1

(1− yiŷi)
+

s.t. ŷi = ⟨xi,w⟩+ b,∀i

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩

s.t.
∑
i

αiyi = 0
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Complementary Slackness
We have used the following relation to introduce the dual variables:

C · (t)+ C>0
= max{Ct, 0} = max

0≤α≤C
αt =: α∗t

• t > 0 =⇒ α∗ = C, α∗ = C =⇒ t≥ 0

• t < 0 =⇒ α∗ = 0, α∗ = 0 =⇒ t≤ 0

• t = 0 =⇒ 0 ≤ α∗ ≤ C, 0 < α∗ < C =⇒ t = 0

• Consider t = 1− yiŷi:
▶ 1 > yiŷi =⇒ α∗

i = C, α∗
i = C =⇒ 1≥ yiŷi (margin area or wrong area)

▶ 1 < yiŷi =⇒ α∗
i = 0, α∗

i = 0 =⇒ 1≤ yiŷi (correctly classified with good
confidence)

▶ 1 = yiŷi =⇒ 0 ≤ α∗
i ≤ C, 0 < α∗

i < C =⇒ 1 = yiŷi (correctly classified,
on H±1)
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Using the locations of points to determine α

! = {$: &, $ + ) = 0}

!, = {$: &, $ + ) = +1}

!. = {$: &, $ + ) = −1}

0 ≤ 1 ≤ 2

0 ≤ 1 ≤ 2

1 = 2

1 = 2

1 = 2

1 = 2

1 = 2

1 = 2

1 = 0

1 = 0

1 = 0

1 = 0

1 = 0

1 = 0

1 = 0

1 = 0
1 = 0

1 = 0

1 = 0

1 = 0

1 = 0
1 = 0
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Recovering w and b from α

Primal Problem:

min
w,b

1
2
∥w∥22 + C

n∑
i=1

(1− yiŷi)
+

s.t. ŷi = ⟨xi,w⟩+ b,∀i

Dual Problem:

min
C≥α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩

s.t.
∑
i

αiyi = 0

• Recovering w∗ :=
∑

i α
∗
i yixi

• Normally, C is large enough such that there is (at least) one data point sitting at
one of H±1, i.e., yŷ = 1; Otherwise, your choice of C might be too small and
allow too many mistakes.

• This point can be used to recover b∗: y(⟨x,w∗⟩+ b∗) = 1 =⇒ b∗ = y − ⟨x,w∗⟩
• Given a test data x, prediction: ŷ = sign(⟨w∗,x⟩+ b∗)
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Training by Gradient Descent

min
w,b

1

2
∥w∥22 + C

n∑
i=1

ℓ(yiŷi), where ŷi = ⟨xi,w⟩+ b

• Gradient descent with step size η:

w← w − η

[
w + C

n∑
i=1

ℓ′(yiŷi)yixi

]

b← b− η

[
C

n∑
i=1

ℓ′(yiŷi)yi

]
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Gradient of Hinge Loss

• ℓ′hinge(t) =

{
−1, t ≤ 1

0, t > 1
while we choose ℓ′Perceptron(t) =

{
−1, t ≤ 0

0, t > 0

• All other losses are differentiable
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