CS480/680: Introduction to Machine Learning

Lecture 5: Hard-Margin Support Vector Machines

UNIVERSITY OF
WATERLOO

Jan 25, 2024



Perceptron Revisited
e YV ={—1,+1},; no padding trick today
® Assuming linearly separable
» exist w and b such that

Vi, yii >0, 9 = (x4, W) + b

® Perceptron: find any w € R4, b€ R
such that:

min 0, s.t. y;y; >0,V

w,b
7b b b . A .
o )?:(fwc ) min 0, s.t.  vy;g; > 1,Vi
w,b
® The larger the margin is, the faster the
Perceptron will converge

1/15



Hard-Margin SVM: Let's maximize margin
(assume training data are linearly separable)
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Margin: Distance from a Point to a Hyperplane

Let H := {x: (x,w) + b= 0}. What is the distance from a point x; to H?
® w is orthogonal to H (see Lecture 2)
® Let x be any vector in H. The distance = The length of the projection of x; — x
onto w R
o Distance(x;, H) = Los=xwl _ [Gow)—Gew)l xEH [Gow) 4] Y20 v

l[wll2 l[wll2 l[wll2 l[wll2
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Margin

Define the smallest distance to a separating hyperplane H among all separable
(training) data as the margin:

® We have assumed H separates the data points (y;y; > 0 for all i)
® Margin w.r.t. a separating hyperplane is the minimum distance to every point

e Qur goal is to maximize the margin among all hyperplanes:

max min ——, s.t. y;y; > 0 for all .
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Margin Maximization

max - min Yilji where  §; := (x;, W) + b
w,b:Viy;9; >0 i=1,...,n ||W||2
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Transforming to the Standard Form

max  min Yili  \where Ui = (x;, W) +b

wbviyigi>0 i ||wls]
® Both numerator and denominator are homogeneous in (w,b)
» Meaning that (w,b) and (cw, cb) will have the same loss for ¢ > 0
» Varying ¢(> 0) will not break the condition y;y; > 0 (same decision boundary)
» Varying ¢(> 0) can change the numerator arbitrarily
® Can fix the numerator arbitrarily, say to 1
1 . .
max ——— s.t. min y;y, =1
wb [[wll i
® Max — min, and squaring for convenience:
o1 2
min 3wl
st yi({x;, w) +b) > 1,Vi
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Comparison to Perceptron

Hard-Margin SVM: Perceptron:

min 0
w,b

oo Al 2
sl

e Quadratic programming ® |linear programming

® Fewer solutions ¢ Infinitely many solutions

e Convergence rate depends on
maximum margin

® Margin maximizing
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Support Vectors

mm sIwll st 9> 1,Vicy; =+1

i < —LViryi=-1 %

® Three parallel hyperplanes:

Support Vectors
H:={x:(x,w)+b=0}
Hy ={x:(x,w)+b=1}
H ={x:(x,w)+b=—1}
® Support vectors: points lie on the —
supporting hyperplanes Width

» Usually only a few, but decisive
P decisive because these points

reach the boundary of constraint
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Explanation from Dual Perspective
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Lagrangian Dual
min 3| wll;
st yi((xi, W) +0) > 1, Vi
® Introducing Lagrangian multipliers, a.k.a. dual variables a € R":

min max 3|z = > aufyi((xi, w) +b) = 1]

] +oo, if i,y ((x;,w) +b) <1 (seta; as +00)

Cwb w3, if Vi, yi((x;, w) 4+ b) > 1 (set a; as 0 for all 7)
1

=min o[lwll3, st ik, w) +b) > 1,V

)

® PS.: transfer a constrained optimization to a unconstrained one on w, b
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Lagrangian Dual — Cont’

s 1 2
min 5wl

st yi((x, w) +b) > 1,Vi

® We have proved that it is equivalent to:

min max 1|lw|3 — ZOQ yi (%, W

w,b a>0

® Swapping min with max:

max min
a>0 wb

2||W||2 Zaz YZ Xz>

) +0b) —1]

) +0) —1]
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Lagrangian Dual — Cont’

® Solving inner unconstrained problem by setting derivative to 0:
0 0
o =W ) ayix =0, =) ayi=0
w2 2
® Plug w in the loss to eliminate the inner problem:

Loss(cr) = min w2 - Zalyl X;, W) +b) — 1]

[ — . . . 2 —— . . . . . . — . . .
=3 o Z ciyixills = (O awyixi D awyixi) = b owit Y
. 1 o
That is, max Zai — 31122, ciyixl|3 st Yy =0
® Change to minimization and expand the norm:

min — o; + = Z Z ;oYY (X, X5) st. Yoy, =0

a>0
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Primal vs. Dual

min — o; + % D Zj ;oYY (%, X5)

a>0

s.t. jg:cuyi::O

® dual variables: o« € R"

min 3|w|;
st yi((x;, w) +b) > 1,Vi

® primal variables: w € R b € R

. . " '® each «; corresponds to a data sample
® primal inequalities: n ! . -

. . '® dual inequalities: n
® primal equalities: 0 !

30 dual equalities: 1
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Support Vectors and Dual Variables

The data with a; = 0 does not contribute to the decision boundary (non-support
vector).
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The reason why the dual form is of interest

Sometimes, data might not be linearly separable
use a non-linear mapping ¢ to map the data; but ¢ is unknown?

min — Z o + % Zz Zj ;oYY (Xi, X5) | st Z azy; =0

a>0

| an unknown non-linear mapping ¢

min — Z o; + % > Zj Q;00Y;Y (D(x4), p(x5)) s.t. Z a;y; =0

a>0
- NS 7

TV
has a closed form w.r.t. x; and x;

® This is also known as kernel; we don’t need to know ¢ explicitly
> Example: (¢(x;), ¢(x;)) = ({(xi,%;) +1)1° (no ¢ appears in the RHS)
» Only inner product between data has this nice property

e We will see more details in Lecture 7
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