CS480/680: Introduction to Machine Learning

Lecture 5: Hard-Margin Support Vector Machines

Hongyang Zhang

Jan 25, 2024

Perceptron Revisited

- $\mathcal{Y}=\{-1,+1\}$; no padding trick today
- Assuming linearly separable
- exist \mathbf{w} and b such that

$$
\forall i, \mathrm{y}_{i} \hat{y}_{i}>0, \hat{y}_{i}=\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b
$$

- Perceptron: find any $\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$ such that:

$$
\min _{\mathbf{w}, b} 0, \text { s.t. } \quad y_{i} \hat{y}_{i}>0, \forall i
$$

$$
\stackrel{(\mathbf{w}, b) \rightarrow(c \mathbf{w}, c b)}{\Leftrightarrow} \min _{\mathbf{w}, b} 0, \text { s.t. } \quad \mathrm{y}_{i} \hat{y}_{i} \geq 1, \forall i
$$

- The larger the margin is, the faster the Perceptron will converge

Hard-Margin SVM: Let's maximize margin (assume training data are linearly separable)

Margin: Distance from a Point to a Hyperplane

Let $H:=\{\mathbf{x}:\langle\mathbf{x}, \mathbf{w}\rangle+b=0\}$. What is the distance from a point \mathbf{x}_{i} to H ?

- \mathbf{w} is orthogonal to H (see Lecture 2)
- Let \mathbf{x} be any vector in H. The distance $=$ The length of the projection of $\mathbf{x}_{i}-\mathbf{x}$ onto w
- Distance $\left(\mathbf{x}_{i}, H\right)=\frac{\left|\left\langle\mathbf{x}_{i}-\mathbf{x}, \mathbf{w}\right\rangle\right|}{\|\mathbf{w}\|_{2}}=\frac{\left|\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle-\langle\mathbf{x}, \mathbf{w}\rangle\right|}{\|\mathbf{w}\|_{2}} \stackrel{\mathbf{x} \in H}{=} \frac{\left|\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right|}{\|\mathbf{w}\|_{2}} \stackrel{\mathbf{y}_{i} \hat{y}_{i}>0}{=} \frac{\mathbf{y}_{i} \hat{y}_{i}}{\|\mathbf{w}\|_{2}}$

Margin

Define the smallest distance to a separating hyperplane H among all separable (training) data as the margin:

$$
\min _{i} \frac{\mathbf{y}_{i} \hat{y}_{i}}{\|\mathbf{w}\|_{2}}=\min _{i} \frac{\left|\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right|}{\|\mathbf{w}\|_{2}}
$$

- We have assumed H separates the data points $\left(\mathrm{y}_{i} \hat{y}_{i}>0\right.$ for all $\left.i\right)$
- Margin w.r.t. a separating hyperplane is the minimum distance to every point
- Our goal is to maximize the margin among all hyperplanes:

$$
\max _{\mathbf{w}, b} \min _{i} \frac{\mathrm{y}_{i} \hat{y}_{i}}{\|\mathbf{w}\|_{2}}, \quad \text { s.t. } \quad \mathrm{y}_{i} \hat{y}_{i}>0 \text { for all } i .
$$

Margin Maximization

$\max _{\mathbf{w}, b: \forall i, \mathbf{y}_{i} \hat{y}_{i}>0} \min _{i=1, \ldots, n} \frac{\mathrm{y}_{i} \hat{y}_{i}}{\|\mathbf{w}\|_{2}}, \quad$ where $\quad \hat{y}_{i}:=\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b$

Transforming to the Standard Form

$$
\max _{\mathbf{w}, b: \forall i, \mathbf{y}_{i} \hat{y}_{i}>0} \min _{i} \frac{\mathrm{y}_{i} \hat{y}_{i}}{\|\mathbf{w}\|_{2}}, \quad \text { where } \quad \hat{y}_{i}:=\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b
$$

- Both numerator and denominator are homogeneous in (\mathbf{w}, b)
- Meaning that (\mathbf{w}, b) and $(c \mathbf{w}, c b)$ will have the same loss for $c>0$
- Varying $c(>0)$ will not break the condition $\mathrm{y}_{i} \hat{y}_{i}>0$ (same decision boundary)
- Varying $c(>0)$ can change the numerator arbitrarily
- Can fix the numerator arbitrarily, say to 1

$$
\max _{\mathbf{w}, b} \frac{1}{\|\mathbf{w}\|_{2}} \quad \text { s.t. } \quad \min _{i} \mathrm{y}_{i} \hat{y}_{i}=1
$$

- Max \rightarrow min, and squaring for convenience:

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1, \forall i
\end{array}
$$

Comparison to Perceptron

Hard-Margin SVM:

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & \mathrm{y}_{i} \hat{y}_{i} \geq 1, \forall i
\end{array}
$$

- Quadratic programming
- Fewer solutions
- Margin maximizing

Perceptron:

$$
\begin{aligned}
& \min _{\mathbf{w}, b} 0 \\
& \text { s.t. } \mathrm{y}_{i} \hat{y}_{i} \geq 1, \forall i
\end{aligned}
$$

- Linear programming
- Infinitely many solutions
- Convergence rate depends on maximum margin

Support Vectors

$$
\begin{aligned}
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \text { s.t. } & \hat{y}_{i} \geq 1, \forall i: \mathrm{y}_{i}=+1 \\
& \hat{y}_{i} \leq-1, \forall i: \mathrm{y}_{i}=-1
\end{aligned}
$$

- Three parallel hyperplanes:

$$
\begin{aligned}
H & :=\{\mathbf{x}:\langle\mathbf{x}, \mathbf{w}\rangle+b=0\} \\
H_{+} & :=\{\mathbf{x}:\langle\mathbf{x}, \mathbf{w}\rangle+b=1\} \\
H_{-} & :=\{\mathbf{x}:\langle\mathbf{x}, \mathbf{w}\rangle+b=-1\}
\end{aligned}
$$

- Support vectors: points lie on the supporting hyperplanes
- Usually only a few, but decisive

- decisive because these points reach the boundary of constraint

Explanation from Dual Perspective

Lagrangian Dual

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1, \forall i
\end{array}
$$

- Introducing Lagrangian multipliers, a.k.a. dual variables $\boldsymbol{\alpha} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
& \min _{\mathbf{w}, b} \max _{\boldsymbol{\alpha} \geq \mathbf{0}} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}-\sum_{i} \alpha_{i}\left[\mathbf{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)-1\right] \\
= & \min _{\mathbf{w}, b} \begin{cases}+\infty, & \text { if } \left.\exists i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)<1 \text { (set } \alpha_{i} \text { as }+\infty\right) \\
\frac{1}{2}\|\mathbf{w}\|_{2}^{2}, & \text { if } \left.\forall i, \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1 \text { (set } \alpha_{i} \text { as } 0 \text { for all } i\right) \\
= & \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}, \quad \text { s.t. } \quad \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1, \forall i\end{cases}
\end{aligned}
$$

- P.S.: transfer a constrained optimization to a unconstrained one on w, b

Lagrangian Dual - Cont'

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1, \forall i
\end{array}
$$

- We have proved that it is equivalent to:

$$
\min _{\mathbf{w}, b} \max _{\boldsymbol{\alpha} \geq \mathbf{0}} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}-\sum_{i} \alpha_{i}\left[\mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)-1\right]
$$

- Swapping min with max:

$$
\max _{\boldsymbol{\alpha} \geq \mathbf{0}} \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}-\sum_{i} \alpha_{i}\left[\mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)-1\right]
$$

Lagrangian Dual - Cont'

- Solving inner unconstrained problem by setting derivative to 0 :

$$
\frac{\partial}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}=0, \quad \frac{\partial}{\partial b}=-\sum_{i} \alpha_{i} \mathbf{y}_{i}=0
$$

- Plug \mathbf{w} in the loss to eliminate the inner problem:

$$
\begin{aligned}
\operatorname{Loss}(\boldsymbol{\alpha}) & =\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|_{2}^{2}-\sum_{i} \alpha_{i}\left[\mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)-1\right] \\
& =\frac{1}{2}\left\|\sum_{i} \alpha_{i} \mathrm{y}_{i} \mathbf{x}_{i}\right\|_{2}^{2}-\left\langle\sum_{i} \alpha_{i} \mathrm{y}_{i} \mathbf{x}_{i}, \sum_{i} \alpha_{i} \mathrm{y}_{i} \mathbf{x}_{i}\right\rangle-b \sum_{i} \alpha_{i} \mathrm{y}_{i}+\sum_{i} \alpha_{i}
\end{aligned}
$$

That is, $\max _{\alpha \geq \mathbf{0}} \sum_{i} \alpha_{i}-\frac{1}{2}\left\|\sum_{i} \alpha_{i} \mathrm{y}_{i} \mathbf{x}_{i}\right\|_{2}^{2} \quad$ s.t. $\quad \sum_{i} \alpha_{i} \mathrm{y}_{i}=0$

- Change to minimization and expand the norm:

$$
\min _{\alpha \geq 0}-\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \mathrm{y}_{i} \mathrm{y}_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \quad \text { s.t. } \sum_{i} \alpha_{i} \mathrm{y}_{i}=0
$$

Primal vs. Dual

$$
\begin{array}{ll}
\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|_{2}^{2} \\
\text { s.t. } & \mathrm{y}_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right) \geq 1, \forall i
\end{array}
$$

- primal variables: $\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}$
- primal inequalities: n

$$
\begin{aligned}
& \min _{\alpha \geq 0}-\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \mathrm{y}_{i} \mathrm{y}_{j}\left\langle\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle\right. \\
& \text { s.t. } \quad \sum_{i} \alpha_{i} \mathrm{y}_{i}=0
\end{aligned}
$$

- dual variables: $\boldsymbol{\alpha} \in \mathbb{R}^{n}$
- each α_{i} corresponds to a data sample
- dual inequalities: n
- dual equalities: 1

Support Vectors and Dual Variables

$$
\mathbf{w}=\sum_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}
$$

The data with $\alpha_{i}=0$ does not contribute to the decision boundary (non-support vector).

The reason why the dual form is of interest

Sometimes, data might not be linearly separable Better idea: use a non-linear mapping ϕ to map the data; but ϕ is unknown?

$$
\min _{\alpha \geq \mathbf{0}}-\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \mathrm{y}_{i} \mathrm{y}_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \quad \text { s.t. } \quad \sum_{i} \alpha_{i} \mathrm{y}_{i}=0
$$

\Downarrow an unknown non-linear mapping ϕ

$$
\min _{\alpha \geq \mathbf{0}}-\sum_{i} \alpha_{i}+\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \mathrm{y}_{i} \mathrm{y}_{j} \underbrace{\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle}_{\text {has a closed form w.r.t. } \mathbf{x}_{i} \text { and } \mathbf{x}_{j}} \quad \text { s.t. } \quad \sum_{i} \alpha_{i} \mathrm{y}_{i}=0
$$

- This is also known as kernel; we don't need to know ϕ explicitly
- Example: $\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle=\left(\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle+1\right)^{10}$ (no ϕ appears in the RHS)
- Only inner product between data has this nice property
- We will see more details in Lecture 7

OuBstions

