
CS480/680: Introduction to Machine Learning
Lecture 5: Hard-Margin Support Vector Machines

Hongyang Zhang

Jan 25, 2024



Perceptron Revisited
• Y = {−1,+1}; no padding trick today

• Assuming linearly separable
▶ exist w and b such that

∀i, yiŷi > 0, ŷi = ⟨xi,w⟩+ b

• Perceptron: find any w ∈ Rd, b ∈ R
such that:

min
w,b

0, s.t. yiŷi > 0,∀i

(w,b)→(cw,cb)⇔ min
w,b

0, s.t. yiŷi ≥ 1,∀i

• The larger the margin is, the faster the
Perceptron will converge
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Hard-Margin SVM: Let’s maximize margin
(assume training data are linearly separable)
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Margin: Distance from a Point to a Hyperplane
Let H := {x : ⟨x,w⟩+ b = 0}. What is the distance from a point xi to H?
• w is orthogonal to H (see Lecture 2)
• Let x be any vector in H. The distance = The length of the projection of xi − x
onto w

• Distance(xi, H) = |⟨xi−x,w⟩|
∥w∥2 = |⟨xi,w⟩−⟨x,w⟩|

∥w∥2
x∈H
= |⟨xi,w⟩+b|

∥w∥2
yiŷi>0
= yiŷi

∥w∥2
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Margin

Define the smallest distance to a separating hyperplane H among all separable
(training) data as the margin:

min
i

yiŷi
∥w∥2

= min
i

| ⟨xi,w⟩+ b|
∥w∥2

• We have assumed H separates the data points (yiŷi > 0 for all i)

• Margin w.r.t. a separating hyperplane is the minimum distance to every point

• Our goal is to maximize the margin among all hyperplanes:

max
w,b

min
i

yiŷi
∥w∥2

, s.t. yiŷi > 0 for all i.
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Margin Maximization

max
w,b:∀i,yiŷi>0

min
i=1,...,n

yiŷi
∥w∥2

, where ŷi := ⟨xi,w⟩+ b
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Transforming to the Standard Form

max
w,b:∀i,yiŷi>0

min
i

yiŷi
∥w∥2

, where ŷi := ⟨xi,w⟩+ b

• Both numerator and denominator are homogeneous in (w, b)
▶ Meaning that (w, b) and (cw, cb) will have the same loss for c > 0
▶ Varying c(> 0) will not break the condition yiŷi > 0 (same decision boundary)
▶ Varying c(> 0) can change the numerator arbitrarily

• Can fix the numerator arbitrarily, say to 1

max
w,b

1

∥w∥2
s.t. min

i
yiŷi = 1

• Max → min, and squaring for convenience:

min
w,b

1
2
∥w∥22

s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i
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Comparison to Perceptron

Hard-Margin SVM:

min
w,b

1
2
∥w∥22

s.t. yiŷi ≥ 1,∀i

• Quadratic programming

• Fewer solutions

• Margin maximizing

Perceptron:

min
w,b

0

s.t. yiŷi ≥ 1,∀i

• Linear programming

• Infinitely many solutions

• Convergence rate depends on
maximum margin
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Support Vectors

min
w,b

1
2
∥w∥22 s.t. ŷi ≥ 1,∀i : yi = +1

ŷi ≤ −1,∀i : yi = −1

• Three parallel hyperplanes:

H := {x : ⟨x,w⟩+ b = 0}
H+ := {x : ⟨x,w⟩+ b = 1}
H− := {x : ⟨x,w⟩+ b = −1}

• Support vectors: points lie on the
supporting hyperplanes
▶ Usually only a few, but decisive
▶ decisive because these points

reach the boundary of constraint
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Explanation from Dual Perspective
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Lagrangian Dual

min
w,b

1
2
∥w∥22

s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i

• Introducing Lagrangian multipliers, a.k.a. dual variables α ∈ Rn:

min
w,b

max
α≥0

1
2
∥w∥22 −

∑
i

αi[yi(⟨xi,w⟩+ b)− 1]

=min
w,b

{
+∞, if ∃i, yi(⟨xi,w⟩+ b) < 1 (set αi as +∞)
1
2
∥w∥22, if ∀i, yi(⟨xi,w⟩+ b) ≥ 1 (set αi as 0 for all i)

=min
w,b

1

2
∥w∥22, s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i

• P.S.: transfer a constrained optimization to a unconstrained one on w, b
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Lagrangian Dual — Cont’

min
w,b

1
2
∥w∥22

s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i

• We have proved that it is equivalent to:

min
w,b

max
α≥0

1
2
∥w∥22 −

∑
i

αi[yi(⟨xi,w⟩+ b)− 1]

• Swapping min with max:

max
α≥0

min
w,b

1
2
∥w∥22 −

∑
i

αi[yi(⟨xi,w⟩+ b)− 1]
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Lagrangian Dual — Cont’
• Solving inner unconstrained problem by setting derivative to 0:

∂

∂w
= w −

∑
i

αiyixi = 0,
∂

∂b
= −

∑
i

αiyi = 0

• Plug w in the loss to eliminate the inner problem:

Loss(α) = min
w,b

1
2
∥w∥22 −

∑
i

αi[yi(⟨xi,w⟩+ b)− 1]

=
1

2
∥
∑
i

αiyixi∥22 − ⟨
∑
i

αiyixi,
∑
i

αiyixi⟩ − b
∑
i

αiyi +
∑
i

αi

That is, max
α≥0

∑
i

αi − 1
2
∥
∑

i αiyixi∥22 s.t.
∑

i αiyi = 0

• Change to minimization and expand the norm:

min
α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩ s.t.

∑
i αiyi = 0
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Primal vs. Dual

min
w,b

1
2
∥w∥22

s.t. yi(⟨xi,w⟩+ b) ≥ 1,∀i

• primal variables: w ∈ Rd, b ∈ R
• primal inequalities: n

• primal equalities: 0

min
α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩

s.t.
∑
i

αiyi = 0

• dual variables: α ∈ Rn

• each αi corresponds to a data sample

• dual inequalities: n

• dual equalities: 1
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Support Vectors and Dual Variables

w =
∑
i

αiyixi.

The data with αi = 0 does not contribute to the decision boundary (non-support
vector).
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The reason why the dual form is of interest
Sometimes, data might not be linearly separable
Better idea: use a non-linear mapping ϕ to map the data; but ϕ is unknown?

min
α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨xi,xj⟩ s.t.

∑
i

αiyi = 0

⇓ an unknown non-linear mapping ϕ

min
α≥0

−
∑
i

αi +
1
2

∑
i

∑
j αiαjyiyj ⟨ϕ(xi), ϕ(xj)⟩︸ ︷︷ ︸

has a closed form w.r.t. xi and xj

s.t.
∑
i

αiyi = 0

• This is also known as kernel; we don’t need to know ϕ explicitly
▶ Example: ⟨ϕ(xi), ϕ(xj)⟩ = (⟨xi,xj⟩+ 1)10 (no ϕ appears in the RHS)
▶ Only inner product between data has this nice property

• We will see more details in Lecture 7
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