CS480/680: Introduction to Machine Learning Lecture 3: Linear Regression

Hongyang Zhang

Jan 18\&23, 2024

Regression

- Given training data $\left(\mathbf{x}_{i}, \mathrm{y}_{i}\right)$, find $f: \mathcal{X} \rightarrow \mathcal{Y}$ such that $f\left(\mathbf{x}_{i}\right) \approx y_{i}$
- $\mathbf{x}_{i} \in \mathcal{X} \subseteq \mathbb{R}^{d}$: feature vector for the i-th training example
- $\mathrm{y}_{i} \in \mathcal{Y} \subseteq \mathbb{R}^{t}: t$ responses, $t=1$ or even $t=\infty$

The Difficulty

Theorem: Exact interpolation is always possible

For any finite training data $\left(\mathbf{x}_{i}, \mathrm{y}_{i}\right): i=1, \ldots, n$ such that $\mathbf{x}_{i} \neq \mathbf{x}_{j}$ for any i and j, there exist infinitely many functions f such that for all i,

$$
f\left(\mathbf{x}_{i}\right)=\mathrm{y}_{i} .
$$

- We cannot decide on a unique f !
- On new data \mathbf{x}, our prediction $\hat{\mathbf{y}}=f(\mathbf{x})$ can vary significantly!
- This is where leveraging the prior knowledge of f is important
- "The simplest explanation is usually the correct one"

Prior Knowledge

- Prior knowledge on the functional form of f
- Linear vs. nonlinear (e.g., exponential function)

Underfitting, Good Fitting, Overfitting

Underfitted

Good Fit/Robust

Overfitted

Statistical Learning

- Training and test data are both iid samples from the same unknown distribution \mathcal{P}
- $\left(\mathbf{X}_{i}, \mathrm{Y}_{i}\right) \sim \mathcal{P}$ and $(\mathbf{X}, \mathrm{Y}) \sim \mathcal{P}$
- To keep good generalization ability
- Least squares regression: $\min _{f: \mathcal{X} \rightarrow \mathcal{Y}} \mathbb{E}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2}$
- Use squared ℓ_{2} loss to measure error
- Use "square" to make the calculation of the gradient easy
- Regression function: $f^{*}(\mathbf{x})=m(\mathbf{x})=\mathbb{E}[\mathbf{Y} \mid \mathbf{X}=\mathbf{x}]$
- Regression function is optimal (will show in minutes)
- Calculating it needs to know the distribution \mathcal{P}, i.e., all pairs (\mathbf{X}, Y)!
- Changing the square loss changes the regression function accordingly

Geometrically

Bias-Variance Decomposition

$$
\begin{aligned}
\mathbb{E}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2}= & \mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})+m(\mathbf{X})-\mathbf{Y}\|_{2}^{2} \\
= & \mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\mathbb{E}\|m(\mathbf{X})-\mathbf{Y}\|_{2}^{2} \\
& +\underbrace{2 \mathbb{E}\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-\mathrm{Y}\rangle}_{=0} \\
= & \mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\underbrace{\mathbb{E}\|m(\mathbf{X})-\mathbf{Y}\|_{2}^{2}}_{\text {noise (variance) }}
\end{aligned}
$$

- Note that

$$
\begin{aligned}
\mathbb{E}\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-\mathrm{Y}\rangle & =\mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{\mathbf{Y} \mid \mathbf{X}}\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-\mathbf{Y}\rangle\right] \\
& =\mathbb{E}_{\mathbf{X}}\left\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-\mathbb{E}_{\mathbf{Y} \mid \mathbf{X}}[\mathbf{Y}]\right\rangle \\
& =\mathbb{E}_{\mathbf{X}}\langle f(\mathbf{X})-m(\mathbf{X}), m(\mathbf{X})-m(\mathbf{X})\rangle \\
& =0
\end{aligned}
$$

Bias-Variance Decomposition - Cont'

$$
\mathbb{E}\|f(\mathbf{X})-\mathbf{Y}\|_{2}^{2}=\mathbb{E}\|f(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\underbrace{\mathbb{E}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2}}_{\text {noise (variance) }}
$$

- Holds true for any f
- The noise variance is a constant term w.r.t. f !
- it is an inherent measure of the difficulty of our problem
- Hence, we aim to choose $f \approx m$ to minimize the squared error
- $m(\mathbf{x})=\mathbb{E}[\mathrm{Y} \mid \mathbf{X}=\mathbf{x}]$ is our gold rule!
- However, $m(\mathbf{x})$ is unaccessible since we don't know the conditional distribution; learning f from training data D !

Bias-Variance Decomposition - Cont'

Let f_{D} be the regressor learned on the training dataset D. We have proved:

$$
\mathbb{E}_{\mathbf{X}, \mathrm{Y}}\left\|f_{D}(\mathbf{X})-\mathbf{Y}\right\|_{2}^{2}=\mathbb{E}_{\mathbf{X}}\left\|f_{D}(\mathbf{X})-m(\mathbf{X})\right\|_{2}^{2}+\underbrace{\mathbb{E}_{\mathbf{X}, \mathrm{Y}}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2}}_{\text {noise (variance) }}
$$

Define $\bar{f}(\mathbf{X})=\mathbb{E}_{D}\left[f_{D}(\mathbf{X})\right]$. Let's continue breaking down the first term in RHS:

$$
\begin{aligned}
\mathbb{E}_{D} \mathbb{E}_{\mathbf{X}} \| f_{D}(\mathbf{X})- & m(\mathbf{X})\left\|_{2}^{2}=\mathbb{E}_{D, \mathbf{X}}\right\| f_{D}(\mathbf{X})-\bar{f}(\mathbf{X})+\bar{f}(\mathbf{X})-m(\mathbf{X}) \|_{2}^{2} \\
= & \mathbb{E}_{\mathbf{X}}\|\bar{f}(\mathbf{X})-m(\mathbf{X})\|_{2}^{2}+\mathbb{E}_{D, \mathbf{X}}\left\|f_{D}(\mathbf{X})-\bar{f}(\mathbf{X})\right\|_{2}^{2} \\
& +\underbrace{2 \mathbb{E}_{D, \mathbf{X}}\left\langle\bar{f}(\mathbf{X})-m(\mathbf{X}), f_{D}(\mathbf{X})-\bar{f}(\mathbf{X})\right\rangle}_{=0}
\end{aligned}
$$

Note that

$$
\begin{aligned}
\mathbb{E}_{D, \mathbf{X}}\left\langle\bar{f}(\mathbf{X})-m(\mathbf{X}), f_{D}(\mathbf{X})-\bar{f}(\mathbf{X})\right\rangle & =\mathbb{E}_{\mathbf{X}} \mathbb{E}_{D}\left\langle\bar{f}(\mathbf{X})-m(\mathbf{X}), f_{D}(\mathbf{X})-\bar{f}(\mathbf{X})\right\rangle \\
& =\mathbb{E}_{\mathbf{X}}\left\langle\bar{f}(\mathbf{X})-m(\mathbf{X}), \mathbb{E}_{D}\left[f_{D}(\mathbf{X})\right]-\bar{f}(\mathbf{X})\right\rangle \\
& =\mathbb{E}_{\mathbf{X}}\langle\bar{f}(\mathbf{X})-m(\mathbf{X}), \bar{f}(\mathbf{X})-\bar{f}(\mathbf{X})\rangle=0
\end{aligned}
$$

Bias-Variance Trade-off

$$
\underbrace{\mathbb{E}_{D, \mathbf{X}, \mathrm{Y}}\left\|f_{D}(\mathbf{X})-\mathrm{Y}\right\|_{2}^{2}}_{\text {test error }}
$$

$$
=\underbrace{\mathbb{E}_{\mathbf{X}}\left\|\mathbb{E}_{D}\left[f_{D}(\mathbf{X})\right]-m(\mathbf{X})\right\|_{2}^{2}}_{\text {bias }^{2}}+\underbrace{\mathbb{E}_{D, \mathbf{X}}\left\|f_{D}(\mathbf{X})-\mathbb{E}_{D}\left[f_{D}(\mathbf{X})\right]\right\|_{2}^{2}}_{\text {variance }}+\underbrace{\mathbb{E}_{\mathbf{X}, \mathrm{Y}}\|m(\mathbf{X})-\mathrm{Y}\|_{2}^{2}}_{\text {noise }(\text { variance })}
$$

- $\mathrm{Bias}^{2} \downarrow$, as the model capacity \uparrow (model is more expressively powerful)
- $\operatorname{Var} \uparrow$, as the model capacity \uparrow (prediction of model is less stable)

M. Belkin et al. (2019). "Reconciling modern machine-learning practice and the classical bias-variance trade-off".

Proceedings of the National Academy of Sciences, vol. 116, no. 32, pp. 15849-15854.

Sampling \rightarrow Training

$$
\min _{f: X \rightarrow \mathcal{Y}} \hat{\mathbb{E}}\|f(\mathbf{X})-\mathrm{Y}\|_{2}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left\|f\left(\mathbf{X}_{i}\right)-\mathrm{Y}_{i}\right\|_{2}^{2}
$$

- Replace expectation with sample average: $\left(\mathbf{X}_{i}, \mathrm{Y}_{i}\right) \sim P$
- (Uniform) law of large numbers: as training data size $n \rightarrow \infty$,

$$
\hat{\mathbb{E}} \rightarrow \mathbb{E} \text { and (hopefully) argmin } \hat{\mathbb{E}} \rightarrow \operatorname{argmin} \mathbb{E}
$$

Let's look at the linear function f

Linear Regression

- Affine function: $f(\mathbf{x})=W \mathbf{x}+\mathbf{b}$ with $W \in \mathbb{R}^{t \times d}$ and $\mathbf{b} \in \mathbb{R}^{t}$
- Padding: $\mathbf{x} \leftarrow\binom{\mathbf{x}}{1}, \mathrm{~W} \leftarrow[W, \mathbf{b}]$, hence $f(\mathbf{x})=\mathrm{W} \mathbf{x}$
- In matrix form: $\frac{1}{n} \sum_{i}\left\|f\left(\mathbf{x}_{i}\right)-\mathrm{y}_{i}\right\|_{2}^{2}=\frac{1}{n}\|\mathrm{WX}-\mathrm{Y}\|_{\mathrm{F}}^{2}$
- $\mathrm{X}=\left[\mathrm{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{R}^{(d+1) \times n}, \mathrm{Y}=\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right] \in \mathbb{R}^{t \times n}$
- $\|A\|_{\mathrm{F}}=\sqrt{\sum_{i j} a_{i j}^{2}}$, where $a_{i j}$ is the element on the i-th row, j-th column of A

$$
\min _{W \in \mathbb{R}^{+\times(d+1)}} \frac{1}{n}\|\mathrm{WX}-\mathrm{Y}\|_{\mathrm{F}}^{2}
$$

S. M. Stigler (1981). "Gauss and the Invention of Least Squares". The Annals of Statistics, vol. 9, no. 3, pp. 465-474.

Geometrically

Optimality Condition

Theorem: Fermat's necessary condition for optimality

If \mathbf{w} is a minimizer (or maximizer) of a differentiable function f over an open set, then $f^{\prime}(\mathbf{w})=\mathbf{0}$.

Closed Set

Open Set

Training: Solving Linear Regression

$$
\operatorname{Loss}(\mathrm{W})=\frac{1}{n}\|\mathrm{WX}-\mathrm{Y}\|_{\mathrm{F}}^{2},
$$

- Derivative $\nabla_{\mathrm{W}} \operatorname{Loss}(\mathrm{W})=\frac{2}{n}(\mathrm{WX}-\mathrm{Y}) \mathrm{X}^{\top}$
- Analogous to using chain rule to compute the gradient of $\operatorname{Loss}(w)=\frac{1}{n}(w x-y)^{2}$
- $\nabla_{w} \operatorname{Loss}(w)=\frac{2}{n}(w x-y) x$
- Not the focus of this course; check your (matrix) calculus textbook
- Setting derivative to zero:

$$
\text { Normal equation } \mathrm{WXX}^{\top}=\mathrm{YX}^{\top} \Longrightarrow \mathrm{W}=\mathrm{YX}^{\top}\left(\mathrm{XX}^{\top}\right)^{-1}
$$

- $\mathrm{X} \in \mathbb{R}^{(d+1) \times n}$ hence $\mathrm{XX} \mathrm{X}^{\top} \in \mathbb{R}^{(d+1) \times(d+1)}$ (let's assume XX^{\top} is invertible now)

Prediction

- Once solved W on the training set (X, Y), can predict on unseen data $X_{\text {test }}$:

$$
\hat{Y}_{\text {test }}=W X_{\text {test }}
$$

- We may evaluate our test error if true labels were available:

$$
\frac{1}{n_{\text {test }}}\left\|Y_{\text {test }}-\hat{Y}_{\text {test }}\right\|_{F}^{2}
$$

- We may compare to the training error:

$$
\frac{1}{n}\|\mathrm{Y}-\hat{\mathrm{Y}}\|_{\mathrm{F}}^{2}, \hat{\mathrm{Y}}:=\mathrm{WX}
$$

- Minimizing the training error as a means to reduce the test error

III-conditioning

$$
x=\left[\begin{array}{ll}
0 & \epsilon \\
1 & 1
\end{array}\right], \quad y=\left[\begin{array}{ll}
1 & -1
\end{array}\right]
$$

- Solving linear least squares regression:

$$
\mathbf{w}=y X^{\top}\left(X X^{\top}\right)^{-1}=\left[\begin{array}{ll}
-2 / \epsilon & 1
\end{array}\right]
$$

- Slight perturbation leads to chaotic behaviour!
- Happens whenever X is ill-conditioned, i.e., (close to) rank-deficient
- rank-deficient $X \Rightarrow$ two columns in X are linearly dependent (or simply the same)
\Rightarrow but the corresponding y 's might be different
\Rightarrow a contradiction and lead to an unstable w

Ridge Regression

$$
\min _{\mathrm{W}} \frac{1}{n}\|\mathrm{WX}-\mathrm{Y}\|_{\mathrm{F}}^{2}+\lambda\|\mathrm{W}\|_{\mathrm{F}}^{2}
$$

- Normal equation: $\mathrm{W}\left(\mathrm{XX}^{\top}+n \lambda I\right)=\mathrm{YX}^{\top}$
- $\mathrm{XX}^{\top}+n \lambda I$ is far from rank-deficient matrices for large λ. Proof (optional):
- Consider SVD of

$$
\mathbf{X}=U \Sigma V^{\top} \Rightarrow \mathrm{XX}^{\top}=U \Sigma^{2} U^{\top} \Rightarrow \mathrm{XX}^{\top}+n \lambda I=U\left(\Sigma^{2}+n \lambda I\right) U^{\top}
$$

- $\Sigma^{2}+n \lambda I$ is a diagonal matrix with strictly positive diagonal elements
- Thus, $\mathrm{XX}^{\top}+n \lambda I$ has no zero singular value, i.e., it is of full-rank
- If you are not familiar with SVD, check your linear algebra textbook
- Regularization parameter. λ controls trade-off
- $\lambda=0$ reduces to ordinary linear regression
- $\lambda=\infty$ reduces to $\mathrm{W} \equiv \mathbf{0}$

Data Augmentation

$$
\frac{1}{n}\|\mathrm{WX}-\mathrm{Y}\|_{\mathrm{F}}^{2}+\underbrace{}_{\lambda\|\mathrm{W}\|_{\mathrm{F}}^{2}}=\frac{1}{n} \| \mathrm{W} \underbrace{[\mathrm{X}}_{\hat{X}} \sqrt{n \lambda I}]]-\underbrace{\left[\begin{array}{ll}
\mathrm{Y} & 0
\end{array}\right] \|_{\mathrm{F}}^{2}}_{\mathrm{Y}}
$$

- Augment X with $\sqrt{n \lambda}$, i.e., p data points $\mathbf{x}_{j}=\sqrt{n \lambda} \mathbf{e}_{j}, j=1, \ldots, p$
- Augment Y with zero
regularization = data augmentation

OuBstions

