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Regression
• Given training data (xi, yi), find f : X → Y such that f(xi) ≈ yi

▶ xi ∈ X ⊆ Rd: feature vector for the i-th training example
▶ yi ∈ Y ⊆ Rt: t responses, t = 1 or even t =∞
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The Difficulty

Theorem: Exact interpolation is always possible

For any finite training data (xi, yi) : i = 1, . . . , n such that xi ̸= xj for any i and j,
there exist infinitely many functions f such that for all i,

f(xi) = yi.

• We cannot decide on a unique f !

• On new data x, our prediction ŷ = f(x) can vary significantly!

• This is where leveraging the prior knowledge of f is important

• “The simplest explanation is usually the correct one”
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Prior Knowledge

• Prior knowledge on the functional form of f

• Linear vs. nonlinear (e.g., exponential function)
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Underfitting, Good Fitting, Overfitting
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Statistical Learning

• Training and test data are both iid samples from the same unknown distribution P
▶ (Xi,Yi) ∼ P and (X,Y) ∼ P
▶ To keep good generalization ability

• Least squares regression: min
f :X→Y

E∥f(X)− Y∥22
▶ Use squared ℓ2 loss to measure error
▶ Use “square” to make the calculation of the gradient easy

• Regression function: f ∗(x) = m(x) = E[Y|X = x]
▶ Regression function is optimal (will show in minutes)
▶ Calculating it needs to know the distribution P, i.e., all pairs (X,Y)!
▶ Changing the square loss changes the regression function accordingly
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Geometrically
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Bias-Variance Decomposition

E∥f(X)− Y∥22 = E∥f(X)−m(X) +m(X)− Y∥22
= E∥f(X)−m(X)∥22 + E∥m(X)− Y∥22

+ 2E⟨f(X)−m(X),m(X)− Y⟩︸ ︷︷ ︸
=0

= E∥f(X)−m(X)∥22 + E∥m(X)− Y∥22︸ ︷︷ ︸
noise (variance)

• Note that

E⟨f(X)−m(X),m(X)− Y⟩ = EX[EY|X⟨f(X)−m(X),m(X)− Y⟩]
= EX⟨f(X)−m(X),m(X)− EY|X[Y]⟩
= EX⟨f(X)−m(X),m(X)−m(X)⟩
= 0
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Bias-Variance Decomposition — Cont’

E∥f(X)− Y∥22 = E∥f(X)−m(X)∥22 + E∥m(X)− Y∥22︸ ︷︷ ︸
noise (variance)

• Holds true for any f

• The noise variance is a constant term w.r.t. f !
▶ it is an inherent measure of the difficulty of our problem

• Hence, we aim to choose f ≈ m to minimize the squared error
▶ m(x) = E[Y|X = x] is our gold rule!

• However, m(x) is unaccessible since we don’t know the conditional distribution;
learning f from training data D!
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Bias-Variance Decomposition — Cont’
Let fD be the regressor learned on the training dataset D. We have proved:

EX,Y∥fD(X)− Y∥22 = EX∥fD(X)−m(X)∥22 + EX,Y∥m(X)− Y∥22︸ ︷︷ ︸
noise (variance)

Define f̄(X) = ED[fD(X)]. Let’s continue breaking down the first term in RHS:

EDEX∥fD(X)−m(X)∥22 = ED,X∥fD(X)− f̄(X) + f̄(X)−m(X)∥22
= EX∥f̄(X)−m(X)∥22 + ED,X∥fD(X)− f̄(X)∥22
+ 2ED,X⟨f̄(X)−m(X), fD(X)− f̄(X)⟩︸ ︷︷ ︸

=0

Note that
ED,X⟨f̄(X)−m(X), fD(X)− f̄(X)⟩ = EXED⟨f̄(X)−m(X), fD(X)− f̄(X)⟩

= EX⟨f̄(X)−m(X),ED[fD(X)]− f̄(X)⟩
= EX⟨f̄(X)−m(X), f̄(X)− f̄(X)⟩ = 0
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Bias-Variance Trade-off
ED,X,Y∥fD(X)− Y∥22︸ ︷︷ ︸

test error

= EX∥ED[fD(X)]−m(X)∥22︸ ︷︷ ︸
bias2

+ED,X∥fD(X)− ED[fD(X)]∥22︸ ︷︷ ︸
variance

+EX,Y∥m(X)− Y∥22︸ ︷︷ ︸
noise (variance)

• Bias2 ↓, as the model capacity ↑ (model is more expressively powerful)
• Var ↑, as the model capacity ↑ (prediction of model is less stable)

————————
M. Belkin et al. (2019). “Reconciling modern machine-learning practice and the classical bias–variance trade-off”.
Proceedings of the National Academy of Sciences, vol. 116, no. 32, pp. 15849–15854. 10 / 20



Sampling → Training

min
f :X→Y

Ê∥f(X)− Y∥22 :=
1

n

n∑
i=1

∥f(Xi)− Yi∥22

• Replace expectation with sample average: (Xi,Yi) ∼ P

• (Uniform) law of large numbers: as training data size n→∞,

Ê→ E and (hopefully) argmin Ê→ argmin E
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https://en.wikipedia.org/wiki/Law_of_large_numbers


Let’s look at the linear function f
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Linear Regression

• Affine function: f(x) = Wx+ b with W ∈ Rt×d and b ∈ Rt

• Padding: x←
(
x
1

)
, W← [W,b], hence f(x) = Wx

• In matrix form: 1
n

∑
i ∥f(xi)− yi∥22 = 1

n
∥WX− Y∥2F

▶ X = [x1, . . . ,xn] ∈ R(d+1)×n, Y = [y1, . . . , yn] ∈ Rt×n

▶ ∥A∥F =
√∑

ij a
2
ij , where aij is the element on the i-th row, j-th column of A

min
W∈Rt×(d+1)

1
n
∥WX− Y∥2F

————————
S. M. Stigler (1981). “Gauss and the Invention of Least Squares”. The Annals of Statistics, vol. 9, no. 3, pp. 465–474.
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Geometrically
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Optimality Condition
Theorem: Fermat’s necessary condition for optimality

If w is a minimizer (or maximizer) of a differentiable function f over an open set, then
f ′(w) = 0.

! "

#′(") ≠ 0

)

*

0

Closed	Set Open	Set
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https://en.wikipedia.org/wiki/Pierre_de_Fermat


Training: Solving Linear Regression

Loss(W) =
1

n
∥WX− Y∥2F,

• Derivative ∇WLoss(W) = 2
n
(WX− Y)X⊤

▶ Analogous to using chain rule to compute the gradient of Loss(w) = 1
n(wx− y)2

▶ ∇wLoss(w) =
2
n (wx− y)x

▶ Not the focus of this course; check your (matrix) calculus textbook

• Setting derivative to zero:

Normal equation WXX⊤ = YX⊤ =⇒ W = YX⊤(XX⊤)−1

• X ∈ R(d+1)×n hence XX⊤ ∈ R(d+1)×(d+1) (let’s assume XX⊤ is invertible now)
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Prediction

• Once solved W on the training set (X,Y), can predict on unseen data Xtest:

Ŷtest = WXtest

• We may evaluate our test error if true labels were available:

1
ntest
∥Ytest − Ŷtest∥2F

• We may compare to the training error:

1
n
∥Y − Ŷ∥2F, Ŷ := WX

• Minimizing the training error as a means to reduce the test error
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Ill-conditioning

X =

[
0 ϵ
1 1

]
, y =

[
1 −1

]
• Solving linear least squares regression:

w = yX⊤(XX⊤)−1 =
[
−2/ϵ 1

]
• Slight perturbation leads to chaotic behaviour!

• Happens whenever X is ill-conditioned, i.e., (close to) rank-deficient
▶ rank-deficient X ⇒ two columns in X are linearly dependent (or simply the same)

⇒ but the corresponding y’s might be different
⇒ a contradiction and lead to an unstable w
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Ridge Regression

min
W

1

n
∥WX− Y∥2F + λ∥W∥2F

• Normal equation: W(XX⊤ + nλI) = YX⊤

• XX⊤ + nλI is far from rank-deficient matrices for large λ. Proof (optional):
▶ Consider SVD of

X = UΣV ⊤ ⇒ XX⊤ = UΣ2U⊤ ⇒ XX⊤ + nλI = U(Σ2 + nλI)U⊤

▶ Σ2 + nλI is a diagonal matrix with strictly positive diagonal elements
▶ Thus, XX⊤ + nλI has no zero singular value, i.e., it is of full-rank
▶ If you are not familiar with SVD, check your linear algebra textbook

• Regularization parameter. λ controls trade-off
▶ λ = 0 reduces to ordinary linear regression
▶ λ =∞ reduces to W ≡ 0
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Data Augmentation

1
n
∥WX− Y∥2F + λ∥W∥2F = 1

n
∥W

[
X
√
nλI

]︸ ︷︷ ︸
X̃

−
[
Y 0

]︸ ︷︷ ︸
Ỹ

∥2F

• Augment X with
√
nλI, i.e., p data points xj =

√
nλej, j = 1, . . . , p

• Augment Y with zero

regularization = data augmentation
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