
CS480/680: Introduction to Machine Learning
Lecture 2: Perceptron

Hongyang Zhang

Jan 11&16, 2024



Machine Learning Phases
• Artificial Intelligence is a scientific field concerned with the development of
algorithms that allow computers to learn without being explicitly programmed

• Machine Learning is a branch of Artificial Intelligence, which focuses on methods
that learn from data and make predictions on unseen data

• Three phases: 1) training; 2) prediction (a.k.a. inference or test); 3) evaluation

1 / 30



Paradigms of ML Algorithms (training phase)
• Supervised: learning with labeled data (x, y)

▶ Example: email classification, image classification
▶ Example: predicting house price

• Unsupervised: discover patterns in unlabeled data x
▶ Example: cluster similar data points
▶ Example: reduce the data dimension
▶ Example: learn representation for downstream tasks

• Semi-supervised: using both labeled and unlabeled data

2 / 30



What a Dataset Looks Like

Training samples Test samples
x1 x2 x3 x4 · · · xn x′

1 x′
2

Rd ∋ Feature


0 1 0 1 · · · 1 1 0.9
0 0 1 1 · · · 0 1 1.1
...

...
...

...
. . .

...
...

...
1 0 1 0 · · · 1 1 -0.1

Label y + + – + · · · – ? ?

• each column is a data point: n in total; each has d features

• bottom y is the label vector; binary in this case

• x′
1 and x′

2 are test samples whose labels need to be predicted (may not appear in
the training set; we will use x′ to refer to test samples throughout the course)

3 / 30



Spam Filtering Example

x1 x2 x3 x4 x5 x6 x′

and 1 0 0 1 1 1 1
viagra 1 0 1 0 0 0 1
the 0 1 1 0 1 1 0
of 1 1 0 1 0 1 0

nigeria 1 0 0 0 1 0 0
y + – + – + – ?

• Bag-of-words representation of text; if a word appears, the feature is 1

• Training set: X=[x1, . . . ,xn]∈Rd×n, y=[y1, . . . , yn]∈{±1}n
▶ each column of X is an email xi ∈ Rd, each with d (binary) features
▶ each entry in y is a label yi ∈ {±1}, indicating spam or not

• Given a new email x′ (which might not be seen before), predict spam or not

4 / 30



OR Dataset Example

x1 x2 x3 x4

0 1 0 1
0 0 1 1

y – + + +

5 / 30



Notations and Linear Separator
• Inner product: define inner product ⟨a,b⟩ :=

∑
j ajbj, where aj and bj are the

j-th elements of vectors a and b
• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)
▶ Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=

∑
j xjwj

• Proof: (⇒) Let w := [f(e1), ..., f(ed)]
T , where ei is the i-th coordinate vector.

f(x) = f(x1e1 + x2e2 + ...+ xded)

= x1f(e1) + x2f(e2) + ...+ xdf(ed) = ⟨x,w⟩
(⇐) We have

f(αx+ βz) = ⟨αx+ βz,w⟩
= α⟨x,w⟩+ β⟨z,w⟩
= αf(x) + βf(z)

6 / 30



Notations and Linear Separator — Cont’
• Inner product: define inner product ⟨a,b⟩ :=

∑
j ajbj, where aj and bj are the

j-th elements of vectors a and b

• Linear function: ∀α, β ∈ R,∀x, z ∈ Rd,

f(αx+ βz) = α · f(x) + β · f(z)

▶ Equivalently, ∃w ∈ Rd such that f(x) = ⟨x,w⟩ :=
∑

j xjwj

• Affine function: ∃w ∈ Rd, b ∈ R such that f(x) = ⟨x,w⟩+ b

• Thresholding: sign(t) =

{
+1, t > 0

−1, t ≤ 0
▶ It doesn’t matter where to put the edge case t = 0.

• Combined together: ŷ = sign(⟨x,w⟩+ b) =

{
+1, ⟨x,w⟩+ b > 0

−1, ⟨x,w⟩+ b ≤ 0

7 / 30



Geometrically

• w and b will uniquely determine the linear separator.

• Shadow area: ⟨x,w⟩+ b > 0; White area: ⟨x,w⟩+ b < 0
▶ Therefore, a mistake happens iff y(⟨x,w⟩+ b) ≤ 0, where y is the true label.

8 / 30



Why is w orthogonal to decision boundary H?

0

"

"′
$

""′ ⊥ $

& = {": $, " + , = 0}

$

• Any vector with both head and tail in H can be written as
−→
xx′ = x′ − x for

x,x′ ∈ H
• ⟨w,x′ − x⟩ = ⟨w,x′⟩ − ⟨w,x⟩ = −b− (−b) = 0
• b does not matter for the orthogonality. Holds for any H = {x : ⟨w,x⟩+ b = 0}.
• The length of w does not matter in determining the decision boundary.

9 / 30



The Early Hype in AI...

10 / 30



...due to Perceptron to learn a linear separator

by Frank Rosenblatt
(1928 – 1971)

• Frank Rosenblatt optimistically predicted that the perceptron “may eventually be
able to learn, make decisions, and translate languages”.
• ...of course, which is not true.

————————
F. Rosenblatt (1958). “The perceptron: A probabilistic model for information storage and organization in the brain”.
Psychological Review, vol. 65, no. 6, pp. 386–408.

11 / 30



Algorithm 1 Training Perceptron

Input: Dataset = (xi, yi) ∈ Rd × {±1} : i = 1, . . . , n, initialization w0 ∈ Rd and
b0 ∈ R

Output: w and b (so a linear classifier sign(⟨x,w⟩+ b))
for t = 1, 2, . . . do

receive index It ∈ {1, . . . , n} // It can be random

if yIt(⟨xIt ,w⟩+ b) ≤ 0 // a "mistake" happens

then
w← w + yItxIt // update after a "mistake"

b← b+ yIt
end

end

• Typically setting w0 = 0 and b0 = 0
▶ yŷ > 0 (correct) vs. yŷ < 0 (wrong), where ŷ = ⟨x,w⟩+ b (a.k.a. scorew,b(x))

• Lazy update: “update only when a mistake happens”
12 / 30



Perceptron as a Feasibility Problem

find w ∈ Rd, b ∈ R such that ∀i, yi(⟨xi,w⟩+ b)>0.

• Perceptron solves the above feasibility problem!
▶ it is in iteration: going through the data one by one
▶ it converges faster if the problem is “easier”

• Key insight whenever a mistake happens on (x, y):

y[⟨x,wk+1⟩+ bk+1] = y[⟨x,wk + yx⟩+ bk + y] = y[⟨x,wk⟩+ bk] + ∥x∥22 + 1︸ ︷︷ ︸
always positive

▶ Always increase the confidence yŷ after the update

13 / 30



Spam Filtering Revisited
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Recall the update: w← w+ yx, b← b+ y (when a mistake happens on (x, y))
▶ w0 = [0, 0, 0, 0, 0], b0 = 0 =⇒ scorew0,b0(x1) = 0 =⇒ ŷ1 = − x
▶ w1 = [1, 1, 0, 1, 1], b1 = 1 =⇒ scorew1,b1(x2) = 2 =⇒ ŷ2 = + x
▶ w2 = [1, 1,−1, 0, 1], b2 = 0 =⇒ scorew2,b2(x3) = 0 =⇒ ŷ3 = − x
▶ w3 = [1, 2, 0, 0, 1], b3 = 1 =⇒ scorew3,b3(x4) = 2 =⇒ ŷ4 = + x
▶ w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ scorew4,b4(x5) = 1 =⇒ ŷ5 = + ✓
▶ w4 = [0, 2, 0,−1, 1], b4 = 0 =⇒ scorew4,b4(x6) = −1 =⇒ ŷ6 = − ✓

14 / 30



Spam Filtering Revisited — Cont’
x1 x2 x3 x4 x5 x6

and 1 0 0 1 1 1
viagra 1 0 1 0 0 0
the 0 1 1 0 1 1
of 1 1 0 1 0 1

nigeria 1 0 0 0 1 0
y + – + – + –

• Let’s check the correctness of w4 = [0, 2, 0,−1, 1] and b4 = 0:
▶ scorew4,b4(x1) = 2 =⇒ ŷ1 = + ✓
▶ scorew4,b4(x2) = −1 =⇒ ŷ2 = − ✓
▶ scorew4,b4(x3) = 2 =⇒ ŷ3 = + ✓
▶ scorew4,b4(x4) = −1 =⇒ ŷ4 = − ✓
▶ scorew4,b4(x5) = 1 =⇒ ŷ5 = + ✓
▶ scorew4,b4(x6) = −1 =⇒ ŷ6 = − ✓

15 / 30



A Trick for Hiding the Bias Term
• Previously, we talked about affine function ⟨x,w⟩+ b
• Padding constant 1 to the end of each x:

⟨x,w⟩+ b =
〈(

x

1

)
︸︷︷︸
xpad

,

(
w

b

)
︸ ︷︷ ︸
wpad

〉
(We only need to analyze a linear function)

1

"#

"$

"%

"$

"#

A	line	separator	which	may	
not	go	through	origin

A	hyperplane separator	
which	goes	through	origin

• Update rule when a mistake happens on (x, y):{
w← w + yx

b← b+ y
⇔ wpad ← wpad + yxpad

16 / 30



Convergence Theorem (Linearly Separable Case)

Theorem: Block (1962); Novikoff (1962)

Suppose ∃w∗ such that yi⟨xi,w
∗⟩ > 0 for ∀i. Assume that ∥xi∥2 ≤ C for ∀i and we

normalize the w∗ such that ∥w∗∥2 = 1. Let us define the margin γ := mini |⟨xi,w
∗⟩|.

Then the Perceptron algorithm converges after C2/γ2 mistakes.

!∗:	 !∗ = 1
'(

'(, !∗
'*

'+

,

0

.

17 / 30



The Proof

• Recall that the update is w← w + yx (when a mistake happens on (x, y))

• Consider the effect of an update on ⟨w,w∗⟩:

⟨w + yx,w∗⟩ = ⟨w,w∗⟩+ y⟨x,w∗⟩ w∗ is perfect
= ⟨w,w∗⟩+ |⟨x,w∗⟩| ≥ ⟨w,w∗⟩+ γ

This means that for each update, ⟨w,w∗⟩ grows by at least γ > 0.

• Consider the effect of an update on ⟨w,w⟩:

⟨w + yx,w + yx⟩ = ⟨w,w⟩+ 2y⟨w,x⟩︸ ︷︷ ︸
<0

+ y2⟨x,x⟩︸ ︷︷ ︸
∈[0,C2]

≤ ⟨w,w⟩+ C2

This means that for each update, ⟨w,w⟩ grows by at most C2.

18 / 30



The Proof — Cont’
• Let w0 = 0. Now we know that after M updates:

▶ ⟨w,w∗⟩ ≥Mγ;
▶ ⟨w,w⟩ ≤MC2.

• We can then complete the proof:

1 ≥ cos(w,w∗) =
⟨w,w∗⟩
∥w∥∥w∗∥

≥ Mγ√
MC2 × 1

=
√
M

γ

C
.

This implies M ≤ C2/γ2.

• The larger the margin γ is, the more (linearly) separable the data will be, and
hence the faster the Perceptron algorithm will converge!

19 / 30



Optimization Perspective on Perceptron
• Linear classifier: ŷ = sign(⟨w,x⟩)
• Minimize Perceptron loss:

l(w,xt, yt) = −yt⟨w,xt⟩I[mistake on xt] = −min{yt⟨w,xt⟩, 0}

L(w) = − 1

n

n∑
t=1

yt⟨w,xt⟩I[mistake on xt]

• (Stochastic) gradient descent update:

wt+1 = wt − ηt∇wl(wt,xt, yt) = wt + ηtytxtI[mistake on xt]

• Set step size ηt = 1. If a mistake on (xt, yt), then

wt+1 = wt + ytxt (Perceptron update rule!)

20 / 30



But...Is Perceptron Unique?

• Not unique, because the algorithm stops as long as there is no mistake.
▶ Depend on initialization
▶ Depend on the sampling rule of the updated data index It

• Then which one should we choose?
21 / 30



Maximize Margin: Support Vector Machines

max
w:∀i,ŷiyi>0

min
i=1,...,n

ŷiyi
∥w∥

, ŷi := ⟨xi,w⟩+ b

22 / 30



Perceptron and the 1st AI Winter

Seymour Papert
(1928 – 2016)

Marvin Minsky
(1927 – 2016) Seymour Papert

(1928 – 2016)

• When Minsky and Papert published the book Perceptrons in 1969, which outlined
the limits of what perceptrons could do.

23 / 30



XOR Dataset

x1 x2 x3 x4

0 1 0 1
0 0 1 1
– + + –

• No line can separate + from –

24 / 30



Proof: No Separating Hyperplane

x1 x2 x3 x4

0 1 0 1
0 0 1 1
– + + –

Suppose there exist w and b such that y(⟨x,w⟩+ b) > 0

• x1 = (0, 0), y1 = − =⇒ b < 0
• x2 = (1, 0), y2 = + =⇒ w1 + b > 0
• x3 = (0, 1), y3 = + =⇒ w2 + b > 0 =⇒ w1 + w2 + 2b > 0
• x4 = (1, 1), y4 = − =⇒ w1 + w2 + b < 0 =⇒ b > 0

Contradiction! What happens if we run Perceptron regardless?
25 / 30



Hardness Result (Non-linearly Separable Case)

Theorem: Minsky and Papert (1969); Block and Levin (1970)

If there is no perfect separating hyperplane, then the Perceptron algorithm cycles.

• “...proof of this theorem is complicated ...” (Minsky and Papert, 1987); see
Amaldi and Hauser (2005)

————————
M. L. Minsky and S. A. Papert (1969). “Perceptron”. MIT press; H. D. Block and S. A. Levin (1970). “On the
boundedness of an iterative procedure for solving a system of linear inequalities”. Proceedings of the American
Mathematical Society, vol. 26, pp. 229–235; E. Amaldi and R. Hauser (2005). “Boundedness Theorems for the
Relaxation Method”. Mathematics of Operations Research, vol. 30, no. 4, pp. 939–955.

26 / 30



Beyond Separability

• Soft-margin induced by a reasonable loss ℓ and regularizer reg:

minw Êℓ(yŷ) + reg(w), s.t. ŷ := ⟨x,w⟩+ b

• Penalizing a mistake by the loss ℓ, but not infinitely large (allow error)
27 / 30



When to Stop Perceptron?

• Maximum number of iterations is reached, iter == maxiter

• Maximum allowed runtime is reached

• Training error stops changing

• Validation error stops decreasing

28 / 30



Multiclass Perceptron
• Let c be the total number of classes
• One vs. all

▶ let class k be positive, and all other classes as negative
▶ train Perceptron wk; in total c imbalanced Perceptrons
▶ predict according to the highest score: ŷ := argmaxk⟨x,wk⟩

29 / 30



Multiclass Perceptron — Cont’

• Let c be the total number of classes

• One vs. one
▶ let class k be positive, class l be negative,

and discard all other classes
▶ train Perceptron wk,l; in total

(
c
2

)
balanced

Perceptrons
▶ predict by majority vote:

ŷ := argmaxk
∑
l:l ̸=k

⟨x,wk,l⟩

30 / 30




