CS480/680: Introduction to Machine Learning

Lecture 11: Transformer

Hongyang Zhang

March 5, 2024

Capability

- Writing homeworks
- Writting codes
- Analyzing texts
- Taking exams
- Reasoning
- Interacting with the real world
-

Exam	GPT-4	GPT-3.5
Uniform Bar Exam	$298 / 400(-90 \mathrm{th})$	$213 / 400(-10 \mathrm{th})$
LSAT	$163 / 180(-88 \mathrm{th})$	$149 / 180(-40 \mathrm{th})$
SAT Reading \& Writing	$710 / 800(-93 \mathrm{rd})$	$670 / 800(\sim 87 \mathrm{th})$
SAT Math	$700 / 800(-89 \mathrm{th})$	$590 / 800(-70 \mathrm{th})$
GRE Verbal	$169 / 170(\sim 99 \mathrm{th})$	$154 / 170(\sim 63 \mathrm{rd})$
GRE Writing	$4 / 6(-54 \mathrm{th})$	$4 / 6(-54 \mathrm{th})$
AP Biology	$5 / 5(85 \mathrm{th}-100 \mathrm{th})$	$4 / 5(62 \mathrm{nd}-85 \mathrm{th})$
AP Calculus BC	$4 / 5(43 \mathrm{rd}-59 \mathrm{th})$	$1 / 5(0 \mathrm{th}-7 \mathrm{th})$
AP Chemistry	$4 / 5(71 \mathrm{st}-88 \mathrm{th})$	$2 / 5(22 \mathrm{nd}-46 \mathrm{th})$
AP English Language and Composition	$2 / 5(14 \mathrm{th}-44 \mathrm{th})$	$2 / 5(14 \mathrm{th}-44 \mathrm{th})$
AP English Literature and Composition	$2 / 5(8 \mathrm{th}-22 \mathrm{nd})$	$2 / 5(8 \mathrm{th}-22 \mathrm{nd})$
AP Macroeconomics	$5 / 5(84 \mathrm{th}-100 \mathrm{th})$	$2 / 5(33 \mathrm{rd}-48 \mathrm{th})$
Introductory Sommelier	92%	80%
Advanced Sommelier	77%	46%
Leetcode (easy)	$31 / 41$	$12 / 41$
Leetcode (hard)	$3 / 45$	$0 / 45$

A Big Picture of Foundation Models

[^0]
OpenAl vs. Google in Papers

Papers to Read

- (Transformer) Attention Is All You Need
- (GPT) Improving Language Understanding by Generative Pre-training
- (BERT) BERT: Pre-training of Deep Bidirectional Transformer for Language Understanding
- (GPT-2) Language Models are Unsupervised Multitask Learners
- (GPT-3) Language Models are Few-Shot Learners
- (GPT-3.5) Training Language Models to follow Instructions with Human Feedbacks
- (GPT-4) GPT-4 Technical Report

Papers to Read

- (Transformer) Attention Is All You Need
- (GPT) Improving Language Understanding by Generative Pre-training
- (BERT) BERT: Pre-training of Deep Bidirectional Transformer for Language Understanding
- (GPT-2) Language Models are Unsupervised Multitask Learners
- (GPT-3) Language Models are Few-Shot Learners
- (GPT-3.5) Training Language Models to follow Instructions with Human Feedbacks
- (GPT-4) GPT-4 Technical Report

Transformer is for sequence-to-sequence tasks

- Initially, transformer is designed for machine translation tasks
- Goal: given English sentence X with words (a.k.a. tokens) $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$, produce Chinese translation Y with words/tokens $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{m}$
- Now transformer is used for other sequence-to-sequence tasks, e.g., QA tasks
- Mathematical goal: output prob $\operatorname{argmax}_{Y} p\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{m} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)$

Transformer Architecture

A. Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems 30. 2017, pp. 5998-6008.

Transformer Architecture

A. Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems 30. 2017, pp. 5998-6008.

Transformer Architecture

A. Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems 30. 2017, pp. 5998-6008.

Transformer Architecture

Input and Output

- Input sequence $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$, a.k.a. the prompt
- Output sequence $Y=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right)$
- Mathematical goal: compute $\operatorname{argmax}_{Y} p\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{m} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)$
- One token after another (greedy): $\operatorname{argmax}_{\mathbf{y}_{k}} p\left(\mathbf{y}_{k} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{k-1}\right)$
- This is also known as auto-regressive
- Examples:

Step $0 X$: Where is University of Waterloo?
Step $1 Y$: [START]; $\operatorname{Pr}(\mathrm{It} \mid X$ [START]) highest
Step $2 Y$: [START] It; $\operatorname{Pr}($ is $\mid X$ [START] It) highest
Step $3 Y$: [START] It is; $\operatorname{Pr}($ at $\mid X$ [START] It is) highest
Step $4 Y$: [START] It is at; $\operatorname{Pr}($ Waterloo $\mid X$ [START] It is at) highest
Step $5 Y$: [START] It is at Waterloo; $\operatorname{Pr}([E N D] \mid X$ [START] It is at Waterloo) highest
Step $6 Y$: [START] It is at Waterloo [END]

Transformer Architecture (k-th step)

Transformer Architecture ($k+1$-th step)

Transformer Architecture

Tokenizer

Input Text

- tiktoken is a fast tokenizer for use with OpenAl's models
- https://github.com/openai/tiktoken

Token Embedding

- A mapping from tokens to vectors
- Convert the input tokens to vectors of dimension $d=512$
- Token embedding mapping is trained independently from the LLM.
- Good properties: words of similar meaning are close in the embedding space

Transformer Architecture

Positional Encoding

- Word order matters, different meanings:
- THE CHICKEN crossed the road
- the road THE CHICKEN crossed
- THE CHICKEN the road crossed
- crossed the road THE CHICKEN
- Positional encoding: $W^{p} \in \mathbb{R}^{n \times d}$
- $W_{t, 2 i}^{p}=\sin \left(t / 10000^{2 i / d}\right), W_{t, 2 i+1}^{p}=\cos \left(t / 10000^{2 i / d}\right), i=0, \ldots, \frac{d}{2}-1$ d

- NO parameter to be learned
- Simply add W^{p} to the $n \times d$ token embedding

Positional Encoding

- Word order matters, different meanings:
- THE CHICKEN crossed the road
- the road THE CHICKEN crossed
- THE CHICKEN the road crossed
- crossed the road THE CHICKEN
- Positional encoding matrix: $W^{p} \in \mathbb{R}^{n \times d}$
- $W_{t, 2 i}^{p}=\sin \left(t / 10000^{2 i / d}\right), W_{t, 2 i+1}^{p}=\cos \left(t / 10000^{2 i / d}\right), i=0, \ldots, \frac{d}{2}-1$

- NO parameter to be learned
- Simply add W^{p} to the $n \times d$ token embedding

Positional Encoding

Transformer Architecture

Attention Layer Inputs and Outputs

- Inputs: Value $V \in \mathbb{R}^{n \times d}$, Key $K \in \mathbb{R}^{n \times d}$, Query $Q \in \mathbb{R}^{m \times d}$
- Output: an $m \times d$ matrix

Softmax Recap

Attention Layer

Let $\mathbf{v}_{i}^{\top}, \mathbf{k}_{i}^{\top}$ and \mathbf{q}_{i}^{\top} stand for the row vectors of value, key and query. Let

$$
V=\left[\begin{array}{c}
\mathbf{v}_{1}^{\top} \\
\vdots \\
\mathbf{v}_{n}^{\top}
\end{array}\right] \in \mathbb{R}^{n \times d}, \quad K=\left[\begin{array}{c}
\mathbf{k}_{1}^{\top} \\
\vdots \\
\mathbf{k}_{n}^{\top}
\end{array}\right] \in \mathbb{R}^{n \times d}, \quad Q=\left[\begin{array}{c}
\mathbf{q}_{1}^{\top} \\
\vdots \\
\mathbf{q}_{m}^{\top}
\end{array}\right] \in \mathbb{R}^{m \times d} .
$$

Then (Softmax operation is row-wise, i.e., softmax $(\mathbf{z})_{i}=\frac{e^{e^{z_{i}}}}{\sum_{j=1} e^{e_{j}}}$):

$$
\begin{aligned}
& \text { Attention }(V, K, Q)=\operatorname{softmax}\left(\frac{Q K^{\top}}{\sqrt{d}}\right) V \\
& =\left[\begin{array}{c}
\operatorname{softmax}\left(\frac{\left\langle\mathbf{q}_{1}, \mathbf{k}_{1}\right\rangle}{\sqrt{d}}\right) \mathbf{v}_{1}^{\top}+\ldots+\operatorname{softmax}\left(\frac{\left\langle\mathbf{q}_{1}, \mathbf{k}_{n}\right\rangle}{\sqrt{d}}\right) \mathbf{v}_{n}^{\top} \\
\vdots \\
\operatorname{softmax}\left(\frac{\left\langle\mathbf{q}_{m}, \mathbf{k}_{1}\right\rangle}{\sqrt{d}}\right) \mathbf{v}_{1}^{\top}+\ldots+\operatorname{softmax}\left(\frac{\left\langle\mathbf{q}_{m}, \mathbf{k}_{n}\right\rangle}{\sqrt{d}}\right) \mathbf{v}_{n}^{\top}
\end{array}\right] \in \mathbb{R}^{m \times d}
\end{aligned}
$$

- Inner product $\left\langle\mathbf{q}_{i}, \mathbf{k}_{j}\right\rangle$ measures similarity: more similar, more contributions

Matrix Form of Attention

Scaled Dot-Product Attention
$\operatorname{Attention}(V, K, Q)=\operatorname{sof} \operatorname{tmax}\left(\frac{Q K^{\top}}{\sqrt{d}}\right) V$

- Each output is a convex combination of value rows
- Self-attention: $Q=K=V$
- There is NO learnable parameter so far!

Learnable Attention Layer and Multi-head Attention

- Replace Q, K and V with $Q W^{q}, K W^{k}$ and $V W^{v}$
- $\left\{W^{q}, W^{k}, W^{v}\right\} \in \mathbb{R}^{512 \times 64}$ are learnable linear layers
- Can add $h=8$ linear layers W_{i}^{q} 's, W_{i}^{k} 's and W_{i}^{v} 's in parallel and concatenate their output later (output $\operatorname{dim}=64 \times 8=512$)

Masked Multi-head Attention

- We should not look at future words. Masking them:
- E.g., we have already outputted "University of Waterloo", and we want to predict the next word
- University of Waterloo $\underbrace{\text { locates }}_{[M a s k]} \underbrace{\text { at }}_{[M a s k]} \underbrace{\text { Waterloo }}_{\text {[Mask] }}$
[Mask] [Mask] [Mask]
- Input the masked sequence into the attention layer

Transformer Architecture

Feed-Forward Layer

- Feed-Forward Network

$$
\operatorname{MLP}(\mathbf{x})=\max \left(0, \mathbf{x}^{\top} W_{1}+\mathbf{b}_{1}^{\top}\right) \cdot W_{2}+\mathbf{b}_{2}^{\top}
$$

- Two-layer MLP
- ReLU activation
- $W_{1} \in \mathbb{R}^{d \times 4 d}, W_{2} \in \mathbb{R}^{4 d \times d}$
- Residual connections and layer normalization

Transformer Architecture

Layer Normalization

- Batch size (\# sequences) is often small, e.g., 1, in the NLP tasks
- Therefore, batch normalization might not be a good choice
- Often use layer normalization instead (normalization across the features)

Normalization across mini-batch, independently for each feature

Normalization across features, independently for each sample

Overview of Transformer

- Only three tunable hyper-parameters:
- Number of layers: $N=6$
- Output dimension of all modules is $d=512$
- Number of heads: $h=8$
- The module that connects encoder and decoder is a multi-head attention, where value and key are from encoder, and query is from decoder
- In the other two attention modules, value=key=query

Transformer Loss

- Pretraining Task: predict next words
- Train by minimizing the log-loss between true next word and predicted next word:

$$
\min _{W} \hat{\mathbb{E}}[-\langle Y, \log \hat{Y}\rangle]
$$

- $Y=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{l}\right]$ is output sequence, one-hot
- $\hat{Y}=\left[\hat{\mathbf{y}}_{1}, \ldots, \hat{\mathbf{y}}_{l}\right]$ is the predicted probabilities

Does It Work?

The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU			Training Cost (FLOPs)	
	EN-DE	EN-FR		EN-DE	EN-FR
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]		39.92		$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]		40.46		$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]		40.56		$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4			$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16		$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	$\mathbf{4 1 . 2 9}$		$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1		$\mathbf{3 . 3} \cdot \mathbf{1 0} \mathbf{1 0}^{18}$	
Transformer (big)	$\mathbf{2 8 . 4}$	$\mathbf{4 1 . 8}$		$2.3 \cdot 10^{19}$	

We will see more experiments in the next lecture "Large Language Models".

Contents in the Next Lecture

OuBstions

[^0]: W. Zhao et al. "A Survey of Large Language Models" . arXiv:2303.18223.

