
CS480/680: Introduction to Machine Learning
Lecture 11: Transformer

Hongyang Zhang

March 5, 2024

1 / 34

Capability

• Writing homeworks

• Writting codes

• Analyzing texts

• Taking exams

• Reasoning

• Interacting with the real world

•

2 / 34

A Big Picture of Foundation Models

————————
W. Zhao et al. “A Survey of Large Language Models”. arXiv:2303.18223.

3 / 34

OpenAI vs. Google in Papers

Transformer
06/2017

GPT
06/2018

BERT
10/2018

GPT-2
02/2019

GPT-3
05/2020

GPT-3.5
03/2022

GPT-4
03/2023

Citations
70k

Citations
62k

Citations
5k

Citations
5k

Citations
8k

Citations
434

Citations
-

4 / 34

Papers to Read

• (Transformer) Attention Is All You Need

• (GPT) Improving Language Understanding by Generative Pre-training

• (BERT) BERT: Pre-training of Deep Bidirectional Transformer for Language
Understanding

• (GPT-2) Language Models are Unsupervised Multitask Learners

• (GPT-3) Language Models are Few-Shot Learners

• (GPT-3.5) Training Language Models to follow Instructions with Human
Feedbacks

• (GPT-4) GPT-4 Technical Report

5 / 34

Papers to Read

• (Transformer) Attention Is All You Need

• (GPT) Improving Language Understanding by Generative Pre-training

• (BERT) BERT: Pre-training of Deep Bidirectional Transformer for Language
Understanding

• (GPT-2) Language Models are Unsupervised Multitask Learners

• (GPT-3) Language Models are Few-Shot Learners

• (GPT-3.5) Training Language Models to follow Instructions with Human
Feedbacks

• (GPT-4) GPT-4 Technical Report

Transformer is for sequence-to-sequence tasks

• Initially, transformer is designed for machine translation tasks
▶ Goal: given English sentence X with words (a.k.a. tokens) x1,x2, ...,xn, produce

Chinese translation Y with words/tokens y1,y2, ...,ym

• Now transformer is used for other sequence-to-sequence tasks, e.g., QA tasks

• Mathematical goal: output prob argmaxY p(y1,y2, ...,ym|x1,x2, ...,xn)

6 / 34

Transformer Architecture

————————
A. Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Processing Systems 30. 2017, pp.
5998–6008.

7 / 34

Transformer Architecture

————————
A. Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Processing Systems 30. 2017, pp.
5998–6008.

8 / 34

Transformer Architecture

————————
A. Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Processing Systems 30. 2017, pp.
5998–6008.

9 / 34

Transformer Architecture

10 / 34

Input and Output

• Input sequence X = (x1, . . . ,xn), a.k.a. the prompt

• Output sequence Y = (y1, . . . ,ym)

• Mathematical goal: compute argmaxY p(y1,y2, ...,ym|x1,x2, ...,xn)
▶ One token after another (greedy): argmaxyk

p(yk|x1,x2, ...,xn,y1, ...,yk−1)
▶ This is also known as auto-regressive

• Examples:

Step 0 X: Where is University of Waterloo?
Step 1 Y : [START]; Pr(It | X [START]) highest
Step 2 Y : [START] It; Pr(is | X [START] It) highest
Step 3 Y : [START] It is; Pr(at | X [START] It is) highest
Step 4 Y : [START] It is at; Pr(Waterloo | X [START] It is at) highest
Step 5 Y : [START] It is at Waterloo; Pr([END] | X [START] It is at Waterloo) highest
Step 6 Y : [START] It is at Waterloo [END]

11 / 34

Transformer Architecture (k-th step)

!", !$, … , !& '", '$, … , '()"

*('(|!", !$, … , !&, '", '$, … , '()")

12 / 34

Transformer Architecture (k + 1-th step)

!", !$, … , !& '", '$, … , '()", '(

*('(,"|!", !$, … , !&, '", '$, … , '()", '()

13 / 34

Transformer Architecture

14 / 34

Tokenizer

• tiktoken is a fast tokenizer for use with OpenAI’s models

• https://github.com/openai/tiktoken
15 / 34

https://github.com/openai/tiktoken

Token Embedding

• A mapping from tokens to vectors
▶ Convert the input tokens to vectors of dimension d = 512

• Token embedding mapping is trained independently from the LLM.

• Good properties: words of similar meaning are close in the embedding space

16 / 34

Transformer Architecture

17 / 34

Positional Encoding

• Word order matters, different meanings:
▶ THE CHICKEN crossed the road
▶ the road THE CHICKEN crossed
▶ THE CHICKEN the road crossed
▶ crossed the road THE CHICKEN

• Positional encoding: W p ∈ Rn×d

▶ W p
t,2i = sin(t/100002i/d), W p

t,2i+1 = cos(t/100002i/d), i = 0, . . . , d2 − 1
!

"

• NO parameter to be learned

• Simply add W p to the n× d token embedding
18 / 34

Positional Encoding

• Word order matters, different meanings:
▶ THE CHICKEN crossed the road
▶ the road THE CHICKEN crossed
▶ THE CHICKEN the road crossed
▶ crossed the road THE CHICKEN

• Positional encoding matrix: W p ∈ Rn×d

▶ W p
t,2i = sin(t/100002i/d), W p

t,2i+1 = cos(t/100002i/d), i = 0, . . . , d2 − 1
!

"

20-th	token

80-th	token

Different	positional	
encoding

• NO parameter to be learned

• Simply add W p to the n× d token embedding

Positional Encoding

19 / 34

Transformer Architecture

V K Q

V K QV K Q
V=K=Q V=K=Q

V=K≠Q

20 / 34

Attention Layer Inputs and Outputs

• Inputs: Value V ∈ Rn×d, Key K ∈ Rn×d, Query
Q ∈ Rm×d

• Output: an m× d matrix

V K Q

V K QV K Q
V=K=Q V=K=Q

V=K≠Q

21 / 34

Softmax Recap

!" … … …Logits

… … …Probability
exp	(!()
∑ exp	(!+)�
+

Softmax
operation

!(!-

exp	(!")
∑ exp	(!+)�
+

exp	(!-)
∑ exp	(!+)�
+

Let’s	denote	by
softmax())

=
softmax(+,) softmax(+-) softmax(+.)

)

/

… … …

22 / 34

Attention Layer
Let v⊤

i , k
⊤
i and q⊤

i stand for the row vectors of value, key and query. Let

V =

v
⊤
1
...
v⊤
n

 ∈ Rn×d, K =

k
⊤
1
...
k⊤
n

 ∈ Rn×d, Q =

q
⊤
1
...
q⊤
m

 ∈ Rm×d.

Then (Softmax operation is row-wise, i.e., softmax(z)i =
ezi∑n

j=1 e
zj):

Attention(V,K,Q) = softmax(
QK⊤
√
d

)V

=

 softmax(⟨q1,k1⟩√
d

)v⊤
1 + ...+ softmax(⟨q1,kn⟩√

d
)v⊤

n

...

softmax(⟨qm,k1⟩√
d

)v⊤
1 + ...+ softmax(⟨qm,kn⟩√

d
)v⊤

n

 ∈ Rm×d

• Inner product ⟨qi,kj⟩ measures similarity: more similar, more contributions
23 / 34

Matrix Form of Attention

Attention(V,K,Q) = softmax(QK⊤
√
d
)V

• Each output is a convex combination of value rows

• Self-attention: Q = K = V

• There is NO learnable parameter so far!

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q, K, V) = softmax(
QKT

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

24 / 34

Learnable Attention Layer and Multi-head Attention

Attention(VW v, KW k, QW q)

= softmax

(
QW q(KW k)⊤√

d

)
VW v

• Replace Q, K and V with QW q, KW k and VW v

• {W q, W k, W v}∈ R512×64 are learnable linear layers

• Can add h = 8 linear layers W q
i ’s, W

k
i ’s and W v

i ’s in parallel and concatenate
their output later (output dim = 64× 8 = 512)

25 / 34

Masked Multi-head Attention

• We should not look at future words. Masking them:

▶ E.g., we have already outputted “University of
Waterloo”, and we want to predict the next word

▶ University of Waterloo locates︸ ︷︷ ︸
[Mask]

at︸︷︷︸
[Mask]

Waterloo︸ ︷︷ ︸
[Mask]

• Input the masked sequence into the attention layer

26 / 34

Transformer Architecture

V K Q

V K QV K Q

27 / 34

Feed-Forward Layer

• Feed-Forward Network

MLP(x) = max(0,x⊤W1 + b⊤
1) ·W2 + b⊤

2

▶ Two-layer MLP
▶ ReLU activation
▶ W1 ∈ Rd×4d, W2 ∈ R4d×d

• Residual connections and layer normalization

28 / 34

Transformer Architecture

29 / 34

Layer Normalization
• Batch size (# sequences) is often small, e.g., 1, in the NLP tasks
• Therefore, batch normalization might not be a good choice
• Often use layer normalization instead (normalization across the features)

30 / 34

Overview of Transformer

• Only three tunable hyper-parameters:
▶ Number of layers: N = 6
▶ Output dimension of all modules is d = 512
▶ Number of heads: h = 8

• The module that connects encoder and decoder is a
multi-head attention, where value and key are from
encoder, and query is from decoder

• In the other two attention modules,
value=key=query

V K Q

V K QV K Q
V=K=Q V=K=Q

V=K≠Q

31 / 34

Transformer Loss

• Pretraining Task: predict next words

• Train by minimizing the log-loss between true next
word and predicted next word:

min
W

Ê
[
−
〈
Y, log Ŷ

〉]
▶ Y = [y1, . . . ,yl] is output sequence, one-hot

▶ Ŷ = [ŷ1, . . . , ŷl] is the predicted probabilities

32 / 34

Does It Work?

We will see more experiments in the next lecture “Large Language Models”.

33 / 34

Contents in the Next Lecture

Transformer
06/2017

GPT
06/2018

BERT
10/2018

GPT-2
02/2019

GPT-3
05/2020

GPT-3.5
03/2022

GPT-4
03/2023

Citations
70k

Citations
62k

Citations
5k

Citations
5k

Citations
8k

Citations
434

Citations
-

34 / 34

