
CS480/680: Introduction to Machine Learning
Lecture 10: Convolutional Neural Network

Hongyang Zhang

Feb 15, 2024



MLP Recap
input	layer hidden	layer output	layer

• f(x) = W2σ(W1x+ b1) + b2

• Dense weights; Each connection represents a weight to be learned
• Easy to overfit to training data

1 / 42



Convolutional Neural Network

input	layer hidden	layer output	layer

How about considering weight sharing and sparse weight matrix?

2 / 42



Layers in Convolutional Neural Networks (CNN)

3 / 42



The Form of Image Data

4 / 42



Convolution (One-Channel Input)

5 / 42



Convolution (One-Channel Input)

6 / 42



Convolution (One-Channel Input)

7 / 42



Convolution (One-Channel Input)

8 / 42



Convolution (One-Channel Input)

9 / 42



Convolution (One-Channel Input)

10 / 42



Convolution (One-Channel Input)

11 / 42



Convolution (One-Channel Input)

12 / 42



Convolution (One-Channel Input)

13 / 42



Convolution (One-Channel Input)

14 / 42



Why Convolution?

• Brain science tells us human visual system is using convolution operation

• Traditional image processing algorithms use convolution operation:

=*Edge	detection	(Sobel):

Gaussian	smoothing: =*

15 / 42



Convolution (Multi-Channel Input)

16 / 42



Convolution (Multi-Channel Input)

17 / 42



Convolution (Multi-Channel Input)

18 / 42



Convolution (Multi-Channel Input)

19 / 42



Convolution (Multi-Channel Input)

20 / 42



Convolution (Multi-Channel Input)

21 / 42



Convolution (Multi-Channel Input)

22 / 42



Convolution (Multi-Channel Input)

23 / 42



Controlling the Convolution

• Filter (kernel) size: width x height, e.g. 3 x 3 or 5 x 5; by default, number of
channels of each filter is the same as that of the input (a.k.a. cin)

• Number of kernels: weights are not shared between different filters; determine the
number of channels of output (a.k.a. cout)

• Stride: how many pixels the filter moves each time
▶ typically stride ≤ filter size so as to leave no “gap”
▶ larger stride makes neighboring outputs less similar due to less overlap in the input

window

• Padding: add zeros around boundary of input
▶ keep boundary information lossless

24 / 42



Padding and Stride

25 / 42



Size Calculation

Input size: m× n× cin, filter size: a× b× cin, stride: s× t, padding: p× q (let the
first number refer to the height and the second number refer to the width)

• Pad p pixels on top/bottom and q pixels on left/right

• Move s pixels vertically and t pixels horizontally

• Output size:
⌊
1 + m+2p−a

s

⌋
×

⌊
1 + n+2q−b

t

⌋
• With p =

⌈
m(s−1)+a−s

2

⌉
and q =

⌈
n(t−1)+b−t

2

⌉
, you have “output size = input size”

26 / 42



Convolution Layer (One Kernel)=FC Layer with Weight Sharing

W =

[
w00 w01

w10 w11

]
∈ R2×2, X =

x00 x01 x02

x10 x11 x12

x20 x21 x22

 ∈ R3×3

Wcirc =


w00 w01 0 w10 w11 0 0 0 0
0 w00 w01 0 w10 w11 0 0 0
0 0 0 w00 w01 0 w10 w11 0
0 0 0 0 w00 w01 0 w10 w11

 ∈ R4×9 (circulant matrix)

Vector(X) = [x00, x01, x02, x10, x11, x12, x20, x21, x22]
T ∈ R9

Vector(W ∗ x) = WcircVector(X) ∈ R4

27 / 42



Convolution Layer (One Kernel)=FC Layer with Weight Sharing

9×4 parameters	to	be	leaned 4 parameters	to	be	leaned
28 / 42



Pooling

• Down-sample input size to reduce computation and memory

• Pooling by default is performed on each slice separately
▶ hence output #channel = input #channel
▶ max-pool, average-pool

• Size and stride as in convolution; no parameter; typically no padding

• Global pooling: take the max or average of the whole input slice; output size is
1× 1

29 / 42



Putting Everything Together

• Several standard architectures to choose (examples to follow)

• Try and adapt to fit your problem

30 / 42



LeNet

————————
Y. LeCun et al. “Gradient-based learning applied to document recognition”. Proceedings of the IEEE, vol. 86, no. 11
(1998), pp. 2278–2324.

31 / 42



AlexNet

————————
A. Krizhevsky et al. “ImageNet Classification with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. 2012, pp. 1097–1105.

32 / 42



Comparisons of LeNet and AlexNet

33 / 42



VGGNet

————————
K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-scale Image Recognition”. In: ICLR.
2015.

34 / 42



Memory

35 / 42



Let’s go even deeper!



Inception

————————
C. Szegedy et al. “Going deeper with convolutions”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2015, pp. 1–9.

36 / 42



GoogLeNet

• No fully connected (FC) layers

• Deeper but more efficient and better performance

37 / 42



The Deeper, the Better, but More Difficult to Train

• Deeper models are harder to train due to vanishing / exploding gradient
• Can be worse than shallower networks if not properly trained!

————————
K. He et al. “Deep Residual Learning for Image Recognition”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, pp. 770–778.

38 / 42



Residual Block

• Add a shortcut connection that allows “skipping” one or more layers

• Effectively turning the block into learning residual: output - input

• Allows more direct backpropogation of the gradient through the “shortcut”

• Can also concatenate or add a linear layer if dimensions mismatch

39 / 42



Residual Network (ResNet)

40 / 42



ImageNet (ILSVRC) Competition

• Training set: 1.28M images

• Validation set: 50K images

• Test set: 100K images

• #Classes: 1K

41 / 42



ImageNet (ILSVRC) Competition

42 / 42




