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Activation Maximization

• To understand a neuron activation, fix the network weights
• Enumerate test set or run (projected) grad ascent on input

Q. V. Le et al. “Building high-level features using large scale unsupervised learning”. In: Proceedings of the 29th International Conference on
Machine Learning. 2012.
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https://icml.cc/2012/papers/73.pdf


Gradient Saliency

K. Simonyan et al. “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”. In: ICLR workshop.
2017, R. R. Selvaraju et al. “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization”. In: IEEE International
Conference on Computer Vision. 2017, pp. 618–626.
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https://arxiv.org/abs/1312.6034
https://doi.org/10.1109/ICCV.2017.74


OR Example

y = x1 or x2

• n = 2; consider x1 = x2 = 1

• Gradient methods do not work

– fix x1, conclude that x2 does not matter

– fix x2, conclude that x1 does not matter

– conclude neither x1 or x2 matters ...

• u(1) = u(2) = u(1, 2) = 1 and 0 else

• Banzhaf value: ps ≡ 1
2n−1 =⇒ ϕ1 = ϕ2 =

1
2

• Shapley value: ps =
s!(n−s−1)!

n!
=⇒ ϕ1 = ϕ2 =

1
2
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Coalition Game

• n is the number of “players”

• u : 2[n] → R the “payoff” function

– w.l.o.g. u(∅) = 0, where ∅ is the baseline

• Examples:

– each feature is a player (feature valuation)

– each training example is a player (data valuation)

– each neuron is a player

– performance metric (e.g. accuracy) is payoff

• Valuation: what is the value of each player i?
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E. Ŝtrumbelj and I. Kononenko. “An Efficient Explanation of Individual Classifications using Game Theory”. Journal of Machine Learning
Research, vol. 11 (2010), pp. 1–18.
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https://jmlr.org/papers/v11/strumbelj10a.html


Probabilistic Value

• Given a set function u : 2[n] → R, e.g., accuracy trained on subset of data

• Find an additive approximation ϕ : 2[n] → R, where ϕ(S) =
∑

i∈S ϕ({i})

• Marginal contribution of i: u(S ∪ {i})− u(S \ {i})

• Leave-one out: u([n])− u([n] \ {i})

• (Symmetric) probabilistic value: ϕp
i = ϕp({i}) =

∑
S ̸∋i

ps · [u(S ∪ {i})− u(S)]

– from now on, s = |S|

R. J. Weber. “Probabilistic values for games”. In: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Ed. by A. E. Roth. Cambridge
University Press, 1988, pp. 101–120.
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https://doi.org/10.1017/CBO9780511528446.008


A. R. Karlin and Y. Peres. “Game Theory, Alive!” American Mathematical Society, 2017.
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https://bookstore.ams.org/mbk-101/


ϕi =
∑
S ̸∋i

ps · [u(S ∪ {i})− u(S)]

• n = 3

• u(1, 2) = u(1, 3) = u(1, 2, 3) = 1 and 0 else

• Banzhaf value: ps ≡ 1
2n−1 =⇒ ϕ1 =

1
4
+ 1

4
+ 1

4
, ϕ2 = ϕ3 =

1
4

• Shapley value: ps =
s!(n−s−1)!

n!
=⇒ ϕ1 =

1
6
+ 1

6
+ 1

3
, ϕ2 = ϕ3 =

1
6

J. F. Banzhaf III. “Weighted Voting Doesn’t Work: A Mathematical Analysis”. Rutgers Law Review, vol. 19 (1965), pp. 317–343.

L. S. Shapley. “A Value for n-person Games”. In: Contributions to the Theory of Games. Vol. 2. 1953, pp. 307–318.

L20 8/16

https://heinonline.org/HOL/LandingPage?handle=hein.journals/rutlr19&div=19
https://doi.org/10.1515/9781400881970-018


John Francis Banzhaf III Lloyd Stowell Shapley, Nobel Prize (2012)
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https://en.wikipedia.org/wiki/John_Banzhaf
https://en.wikipedia.org/wiki/Lloyd_Shapley


One Man, One Vote?

J. F. Banzhaf III. “One Man, 3.312 Votes: A Mathematical Analysis of the Electoral College”. Villanova Law Review, vol. 13, no. 2 (1968),
pp. 304–332.
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https://digitalcommons.law.villanova.edu/vlr/vol13/iss2/3


Random Order Value

• Let π be a permutation of [n] := {1, 2, . . . , n}

• Suppose i = π(k) and define

ψi(u, π) = u[π(1), . . . , π(k)︸ ︷︷ ︸
when i joins

]− u[π(1), . . . , π(k − 1)︸ ︷︷ ︸
before i joins

]

• Randomize over permutations: ϕi(u) = Eπψi(u, π)

• What happens if we sum all values?∑
i

ϕi(u) =?

R. J. Weber. “Probabilistic values for games”. In: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Ed. by A. E. Roth. Cambridge
University Press, 1988, pp. 101–120.
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https://doi.org/10.1017/CBO9780511528446.008


Shapley’s Axioms

• Linear: ϕi(u+ v) = ϕi(u) + ϕi(v)

• Symmetry: if u(S ∪ i) = u(S ∪ j) for all S with i, j ̸∈ S, then ϕi = ϕj

• Null: if u(S ∪ i) = u(S) for all S with i ̸∈ S, then ϕi = 0

• Efficient:
∑

i ϕi = u([n])

ϕi(u) =
∑
S ̸∋i

s!(n− s− 1)!

n!
· [u(S ∪ {i})− u(S)], π ∼ Uniform

L. S. Shapley. “A Value for n-person Games”. In: Contributions to the Theory of Games. Vol. 2. 1953, pp. 307–318.
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https://doi.org/10.1515/9781400881970-018


How to Estimate Probabilistic Value?

ϕp
i = ϕp({i}) =

∑
S ̸∋i

ps · [u(S ∪ i)− u(S)]

Algorithm 1: Monte Carlo estimation of probabilistic value
Input: utility u, probability p

1 for i = 1, . . . , n do
2 φi ← 0
3 for k = 1, . . . ,m do
4 sample a random subset S ̸∋ i with probability ∝

(
n−1
s

)
ps

5 φi ← φi + [u(S ∪ {i})− u(S)] // 2 evals of utility

6 ϕ̂i ← φi/m

X. Deng and C. H. Papadimitriou. “On the Complexity of Cooperative Solution Concepts”. Mathematics of Operations Research, vol. 19,
no. 2 (1994), pp. 257–266.
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https://www.jstor.org/stable/3690220


• Suppose w.l.o.g. utility u ∈ [0, 1]

• ϕ̂i is an average over m i.i.d. samples

• From Hoeffding’s inequality: Pr[|ϕ̂i − ϕi| ≥ ϵ] ≤ 2 exp(−mϵ2/2)

• To achieve ∥ϕ̂− ϕ∥∞ ≤ ϵ with probability 1− δ, need O( n
ϵ2
log n

δ
) samples

• Maximum sample reuse for the Banzhaf value: O( n
ϵ2
log n

δ
) for ℓ2 norm

– ∥ϕ̂− ϕ∥2 ≤ ϵ vs. ∥ϕ̂− ϕ∥∞ ≤ ϵ/
√
n

J. Wang and R. Jia. “Data Banzhaf: A Robust Data Valuation Framework for Machine Learning”. In: Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics. 2023.
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https://en.wikipedia.org/wiki/Hoeffding's_inequality
https://arxiv.org/abs/2205.15466


Least-square Value

min
ϕ∈Rn

∑
S⊆[n]

qs · [u(S)− ϕ(S)]2 s.t. u([n]) =
∑
i

ϕi

• Take qs = ps + ps−1 recovers (efficient normalization of) probabilistic value

–
∑
S ̸∋i

ps[u(S ∪{i})−u(S)] =
∑
S∋i

ps−1u(S)−
∑
S ̸∋i

psu(S) =
∑
S∋i

[ps−1+ps]u(S)−
∑
S

psu(S)

– Shapley value corresponds to qs =
(s−1)!(n−1−s)!

(n−1)! ≡ 1

(n−2
s−1)

• Can approximate with O( n
ϵ2
log n

δ
) samples

A. Charnes et al. “Extremal Principle Solutions of Games in Characteristic Function Form: Core, Chebychev and Shapley Value
Generalizations”. In: Econometrics of Planning and Efficiency. 1988, pp. 123–133, L. M. Ruiz et al. “The Family of Least Square Values for
Transferable Utility Games”. Games and Economic Behavior, vol. 24, no. 1-2 (1998), pp. 109–130.

W. Li and Y. Yu. “Faster Approximation of Probabilistic and Distributional Values via Least Squares”. In: International Conference on
Learning Representations (ICLR). 2024.
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https://doi.org/10.1007/978-94-009-3677-5_7
https://doi.org/10.1007/978-94-009-3677-5_7
https://doi.org/10.1006/game.1997.0622
https://doi.org/10.1006/game.1997.0622
https://openreview.net/forum?id=lvSMIsztka


Shapley value ⊆ Random order value ⊆ Probabilistic value ⊆ Least-square value
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