CS480/680: Introduction to Machine Learning Lec 20: Model Interpretability

Yaoliang Yu

April 4, 2024

Activation Maximization

- To understand a neuron activation, fix the network weights
- Enumerate test set or run (projected) grad ascent on input

Q. V. Le et al. "Building high-level features using large scale unsupervised learning". In: Proceedings of the 29th International Conference on Machine Learning. 2012.

Gradient Saliency

K. Simonyan et al. "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps". In: ICLR workshop. 2017, R. R. Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization". In: IEEE International Conference on Computer Vision. 2017, pp. 618–626.

$$y = x_1$$
 or x_2

- n = 2; consider $x_1 = x_2 = 1$
- Gradient methods do not work
 - fix x_1 , conclude that x_2 does not matter
 - fix x_2 , conclude that x_1 does not matter
 - conclude neither $\overline{x_1}$ or $\overline{x_2}$ matters ...
- u(1) = u(2) = u(1,2) = 1 and 0 else
- Banzhaf value: $p_s \equiv \frac{1}{2^{n-1}} \implies \phi_1 = \phi_2 = \frac{1}{2}$

• Shapley value:
$$p_s = \frac{s!(n-s-1)!}{n!} \implies \phi_1 = \phi_2 = \frac{1}{2}$$

Coalition Game

- *n* is the number of "players"
- $u: 2^{[n]} \to \mathbb{R}$ the "payoff" function
 - w.l.o.g. $u(\emptyset) = 0$, where \emptyset is the baseline
- Examples:
 - each feature is a player (feature valuation)
 - each training example is a player (data valuation)
 - each neuron is a player
 - performance metric (e.g. accuracy) is payoff
- Valuation: what is the value of each player i?

E. Ŝtrumbelj and I. Kononenko. "An Efficient Explanation of Individual Classifications using Game Theory". Journal of Machine Learning Research, vol. 11 (2010), pp. 1–18.

- Given a set function $u: 2^{[n]} \to \mathbb{R}$, e.g., accuracy trained on subset of data
- Find an additive approximation $\phi: 2^{[n]} \to \mathbb{R}$, where $\phi(S) = \sum_{i \in S} \phi(\{i\})$
- Marginal contribution of $i: u(S \cup \{i\}) u(S \setminus \{i\})$
- Leave-one out: $u([n]) u([n] \setminus \{i\})$
- (Symmetric) probabilistic value: $\phi_i^p = \phi^p(\{i\}) = \sum_{S \not\ni i} p_s \cdot [u(S \cup \{i\}) u(S)]$
 - from now on, s = |S|

R. J. Weber. "Probabilistic values for games". In: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Ed. by A. E. Roth. Cambridge University Press, 1988, pp. 101–120.

A. R. Karlin and Y. Peres. "Game Theory, Alive!" American Mathematical Society, 2017.

$$\phi_i = \sum_{S \not\ni i} p_s \cdot [u(S \cup \{i\}) - u(S)]$$

•
$$n = 3$$

•
$$u(1,2) = u(1,3) = u(1,2,3) = 1$$
 and 0 else

• Banzhaf value:
$$p_s \equiv \frac{1}{2^{n-1}} \implies \phi_1 = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}, \ \phi_2 = \phi_3 = \frac{1}{4}$$

• Shapley value:
$$p_s = \frac{s!(n-s-1)!}{n!} \implies \phi_1 = \frac{1}{6} + \frac{1}{6} + \frac{1}{3}, \ \phi_2 = \phi_3 = \frac{1}{6}$$

J. F. Banzhaf III. "Weighted Voting Doesn't Work: A Mathematical Analysis". Rutgers Law Review, vol. 19 (1965), pp. 317-343.

L. S. Shapley. "A Value for n-person Games". In: Contributions to the Theory of Games. Vol. 2. 1953, pp. 307-318.

John Francis Banzhaf III

Lloyd Stowell Shapley, Nobel Prize (2012)

One Man, One Vote?

State	Popula-	Electoral	Relative	$Percent \\ Excess$	Percent Devia- tion From	Mississippi	2178141. 4319813	7	1.392	39.2 71.0	-17.3
Name	tion 1960	Vote	Voting Bounger (2)	Voting Power (%)	Average Vot-	Montana	674767.	4	1.421	42.1	-15.5
(1)	Census	1964	Power (2)	Fower (3)	thy 10007 (4)	Nebraska	1411330.	5	1.231	23.1	-26.9
Alabama	2266740	10	1.632	63.2	-3.0	Nevada	285278.	3	1.636	63.6	-2.8
Alaska	226167	10	1.838	83.8	9.2	New Hampshire.	606921.	4	1.499	49.9	-10.9
Arizona	1302161	e e e	1 281	28.1	-23.0	New Jersey	6066782.	17	2.063	106.3	22.6
Arkansas	1786272	6	1 315	31.5	-21.9	New Mexico	951023.	4	1.197	19.7	-28.9
California	15717204	40	3 162	216.2	87.9	New York	16782304.	43	3.312	231.2	96.8
Colorado	1753047	6	1.327	32.7	-21.1	North Carolina	4556155	13	1.807	80.7	74
Connecticut	2535234	8	1.477	47.7	-12.2	North Dakota	632446	4	1.468	46.8	-12.8
Delaware	446292	3	1.308	30.8	-22.3	Ohio	9706397.	26	2 5 3 9	153.9	50.9
Dist. of Columbia	763956	3	1.000	.0	-40.6	Oklahoma	2328284	8	1 541	54 1	_84
Florida	4951560	14	1.870	87.0	11.1	Oregon	1768687	ő	1.321	32.1	-21.5
Georgia	3943116.	12	1.789	78.9	6.3	Pennsylvania	11319366	29	2.638	163.8	56.8
Hawaii	632772.	4	1.468	46.8	-12.8	Rhode Island	859488	4	1 259	25.9	-25.2
Idaho	667191.	4	1.429	42.9	-15.1	South Carolina	2382594	8	1.524	52.4	-9.5
Illinois	10081158.	26	2.491	149.1	48.0	South Dakota	680514	4	1.415	41.5	-159
Indiana	4662498.	13	1.786	78.6	6.1	Tennessee	3567089	11	1 721	72 1	23
Iowa	2757537.	9	1.596	59.6	-5.2	Texas	9579677	25	2 452	145.2	45.7
Kansas	2178611.	7	1.392	39.2	-17.3	Utah	890627.	4	1.237	23.7	-26.5
Kentucky	3038156.	9	1.521	52.1	9.6	Vermont	389881	3	1 400	40.0	-16.8
Louisiana	3257022.	10	1.635	63.5	-2.9	Virginia	3966949	12	1 784	78.4	6.0
Maine	969265.	4	1.186	18.6	-29.5	Washington	2853214	-0	1 569	56.0	-6.8
Maryland	3100689.	10	1.675	67.5	4	West Virginia	1860421	2	1 506	50.6	-10.5
Massachusetts	5148578.	14	1.834	83.4	9.0	Wisconsin	3051777	12	1 788	78.8	-10.5
Michigan	7823194.	21	2.262	126.2	34.4	Wyoming	330066	3	1 521	52.1	-9.6
Minnesota	3413864.	10	1.597	59.7	-5.1	wyoning	330000.	0	1.521	54.1	-9.0

J. F. Banzhaf III. "One Man, 3.312 Votes: A Mathematical Analysis of the Electoral College". Villanova Law Review, vol. 13, no. 2 (1968), pp. 304-332.

Random Order Value

- Let π be a permutation of $[n] := \{1, 2, \dots, n\}$
- Suppose $i = \pi(k)$ and define

$$\psi_i(u,\pi) = u[\underbrace{\pi(1),\ldots,\pi(k)}_{\text{when } i \text{ joins}}] - u[\underbrace{\pi(1),\ldots,\pi(k-1)}_{\text{before } i \text{ joins}}]$$
Randomize over permutations: $\phi_i(u) = \mathbb{E}_{\pi}\psi_i(u,\pi)$

• What happens if we sum all values?

$$\sum_{i} \phi_i(u) = ?$$

•

R. J. Weber. "Probabilistic values for games". In: The Shapley Value: Essays in Honor of Lloyd S. Shapley. Ed. by A. E. Roth. Cambridge University Press, 1988, pp. 101–120.

• Linear:
$$\phi_i(u+v) = \phi_i(u) + \phi_i(v)$$

- Symmetry: if $u(S \cup i) = u(S \cup j)$ for all S with $i, j \notin S$, then $\phi_i = \phi_j$
- Null: if $u(S \cup i) = u(S)$ for all S with $i \notin S$, then $\phi_i = 0$
- Efficient: $\sum_i \phi_i = u([n])$

$$\phi_i(u) = \sum_{S \not\ni i} \frac{s!(n-s-1)!}{n!} \cdot [u(S \cup \{i\}) - u(S)], \qquad \pi \sim \mathsf{Uniform}$$

L. S. Shapley. "A Value for n-person Games". In: Contributions to the Theory of Games. Vol. 2. 1953, pp. 307-318.

How to Estimate Probabilistic Value?

$$\phi_i^p = \phi^p(\{i\}) = \sum_{S \not\ni i} p_s \cdot [u(S \cup i) - u(S)]$$

Algorithm 1: Monte Carlo estimation of probabilistic value

Input: utility u, probability p

1 for i = 1, ..., n do $\varphi_i \leftarrow 0$ 3 for k = 1, ..., m do $\begin{bmatrix} \text{sample a random subset } S \not\ni i \text{ with probability } \propto \binom{n-1}{s} p_s$ $\begin{bmatrix} \varphi_i \leftarrow \varphi_i + [u(S \cup \{i\}) - u(S)] & // 2 \text{ evals of utility} \end{bmatrix}$ $\hat{\phi}_i \leftarrow \varphi_i / m$

X. Deng and C. H. Papadimitriou. "On the Complexity of Cooperative Solution Concepts". Mathematics of Operations Research, vol. 19, no. 2 (1994), pp. 257–266.

- Suppose w.l.o.g. utility $u \in [0, 1]$
- $\hat{\phi}_i$ is an average over m i.i.d. samples
- From Hoeffding's inequality: $\Pr[|\hat{\phi}_i \phi_i| \ge \epsilon] \le 2 \exp(-m\epsilon^2/2)$
- To achieve $\|\hat{\phi} \phi\|_{\infty} \leq \epsilon$ with probability 1δ , need $O(\frac{n}{\epsilon^2} \log \frac{n}{\delta})$ samples
- Maximum sample reuse for the Banzhaf value: $O(\frac{n}{\epsilon^2} \log \frac{n}{\delta})$ for ℓ_2 norm

$$- \|\hat{\phi} - \phi\|_2 \leq \epsilon \text{ vs. } \|\hat{\phi} - \phi\|_\infty \leq \epsilon/\sqrt{n}$$

J. Wang and R. Jia. "Data Banzhaf: A Robust Data Valuation Framework for Machine Learning". In: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. 2023.

$$\min_{\phi \in \mathbb{R}^n} \sum_{S \subseteq [n]} q_s \cdot [u(S) - \phi(S)]^2 \quad \text{s.t.} \quad u([n]) = \sum_i \phi_i$$

• Take $q_s = p_s + p_{s-1}$ recovers (efficient normalization of) probabilistic value

$$-\sum_{S \not\ni i} p_s[u(S \cup \{i\}) - u(S)] = \sum_{S \ni i} p_{s-1}u(S) - \sum_{S \not\ni i} p_su(S) = \sum_{S \ni i} [p_{s-1} + p_s]u(S) - \sum_S p_su(S)$$

– Shapley value corresponds to $q_s = rac{(s-1)!(n-1-s)!}{(n-1)!} \equiv rac{1}{\binom{n-2}{s-1}}$

• Can approximate with $O(\frac{n}{\epsilon^2} \log \frac{n}{\delta})$ samples

A. Charnes et al. "Extremal Principle Solutions of Games in Characteristic Function Form: Core, Chebychev and Shapley Value Generalizations". In: *Econometrics of Planning and Efficiency*. 1988, pp. 123–133, L. M. Ruiz et al. "The Family of Least Square Values for Transferable Utility Games". *Games and Economic Behavior*, vol. 24, no. 1-2 (1998), pp. 109–130.

W. Li and Y. Yu. "Faster Approximation of Probabilistic and Distributional Values via Least Squares". In: International Conference on Learning Representations (ICLR). 2024.

Shapley value \subseteq Random order value \subseteq Probabilistic value \subseteq Least-square value

