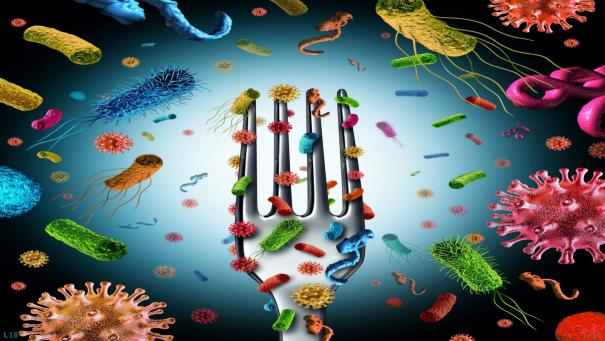
CS480/680: Introduction to Machine Learning

Lec 18: Data Poisoning

Yaoliang Yu

March 28, 2024



Rate limits increasing soon to 8000 for verified, 800 for unverified & 400 for new unverified

👰 Elon Musk 🕏 💟 @elonmusk • Jul 1

To address extreme levels of data scraping & system manipulation, we've applied the following temporary limits:

- Verified accounts are limited to reading 6000 posts/day
- Unverified accounts to 600 posts/day
- New unverified accounts to 300/day

Poisoning Web-Scale Training Datasets is Practical

Nicholas Carlini ¹	Matthew Jagielsk	ti ¹ Christopher A	. Choquette-Choo	Daniel Paleka ²
Will Pearce ³	Hyrum Anderson ⁴	Andreas Terzis ¹	Kurt Thomas ¹	Florian Tramèr ²
¹ Goo	ogle ² ETH Zurie	ch ³ NVIDIA	⁴ Robust Intell	igence

Abstract

Deep learning models are often trained on distributed, webscale datasets crawled from the internet. In this paper, we introduce two new dataset poisoning attacks that intentionally introduce malicious examples to a model's performance. Our attacks are immediately practical and could, today, poison 10 popular datasets. Our first attack, split-view poisoning, exploits the mutable nature of internet content to ensure a dataset annotator's initial view of the dataset differs from the view downloaded by subsequent clients. By exploiting specific invalid trust assumptions, we show how we could have poisoned 0.01% of the LAION-400M or COYO-700M datasets for just \$60 USD. Our second attack, frontrunning poisoning, targets web-scale datasets that periodically snapshot crowd-sourced content—such as Wikipedia—where an attacker only needs a time-limited window to inject malicious examples. In light of both attacks, we notify the maintainers of each affected dataset and recommended several low-overhead defenses.

18 3/1

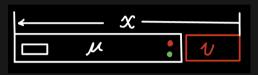
@mayank_jee can i just say that im stoked to meet u? humans are super cool

23/03/2016, 20:32

8 4/15

Data Poisoning

- Training distribution (empirical): μ
- Poisoning distribution (empirical): ν
- Poisoning fraction: $\epsilon_d = \frac{|\nu|}{|\mu|}$
- The mixed distribution: $\chi \propto \mu + \epsilon_d \nu$
 - $-\epsilon_d=0$, standard training
 - $-\epsilon_d=\infty$, unlearnable examples
- Algorithmic Recourse



Example

$$|\mu| = 10000, |\nu| = 300, \epsilon_d = 3\%$$

M. Hardt et al. "Algorithmic Collective Action in Machine Learning". In: International Conference on Machine Learning. 2023.

L18

Bilevel Formulation

$$\max_{\nu \in \Gamma} \mathsf{L}(\tilde{\mu}; \mathbf{w}_*)$$
s.t. $\mathbf{w}_* = \underset{\mathbf{w}}{\operatorname{argmin}} \mathsf{F}(\mu + \epsilon_d \nu; \mathbf{w})$

- Attacker: crafts poison data ν , possibly subject to constraint Γ
- ullet Defender: re-trains model ${f w}$ over mixed data $\chi \propto \mu + \epsilon_d
 u$
- Incur losses L and F, resp., e.g., cross-entropy
- Attacker has full information (not realistic but not a problem for now)

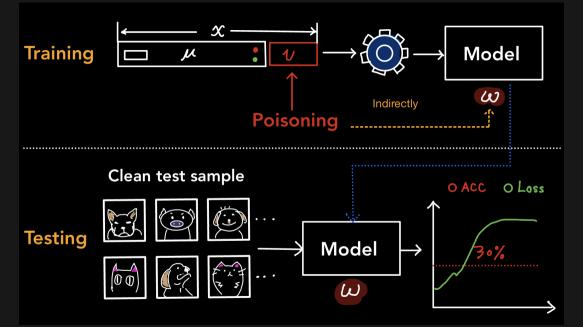
W. Liu and S. Chawla. "A game theoretical model for adversarial learning". In: IEEE International Conference on Data Mining Workshops. 2009, pp. 25–30.

L. Muñoz-González et al. "Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization". In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. 2017, pp. 27–38.

W. R. Huang et al. "Metapoison: Practical general-purpose clean-label data poisoning". In: NeurIPS. 2020, pp. 12080-12091.

P. W. Koh et al. "Stronger Data Poisoning Attacks Break Data Sanitization Defenses". Machine Learning, vol. 111 (2022), pp. 1-47.

Y. Lu et al. "Indiscriminate Data Poisoning Attacks on Neural Networks". Transactions on Machine Learning Research (2022).



_18 7/15

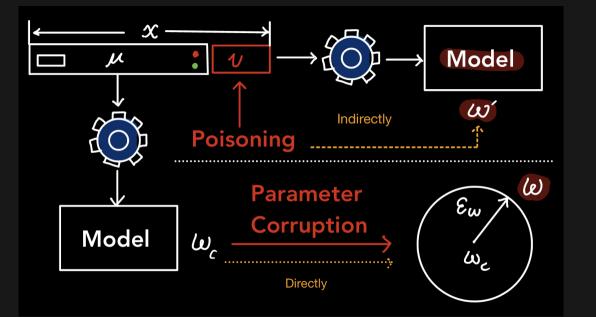
Some Comparisons: $\epsilon_d = 3\%$

Model	Clean Acc	Label Flip Acc/Drop	Min-max Acc/Drop	i-Min-max Acc/Drop	BackGrad Acc/Drop	TGDA Acc/Drop
LR	92.35	90.83/1.52	89.80/ 2.55	89.56/ 2.79	89.82/2.53	$89.56/2.79_{\pm 0.07}$
NN	98.04	97.99/0.05	98.07/-0.03	97.82/0.22	97.67/0.37	$96.54/1.50_{\pm0.02}$
CNN	99.13	99.12/0.01	99.55/-0.42	99.05/0.06	99.02/0.09	$98.02/1.11_{\pm 0.01}$

Model	Clean	Label Flip		MetaPois	on	TGDA		
	Acc	Acc/Drop	Time	Acc/Drop	Time	Acc/Drop	Time	
CNN ResNet-18	69.44 94.95			$68.14/1.13_{\pm 0.12} \\92.90/2.05_{\pm 0.07}$		$65.15/4.29_{\pm 0.09} \\ 89.41/5.54_{\pm 0.03}$	42 hrs 162 hrs	

8/15

Y. Lu et al. "Indiscriminate Data Poisoning Attacks on Neural Networks". Transactions on Machine Learning Research (2022).



L18 9/15

Parameter Corruption vs. Data Poisoning

$$\max_{\|\mathbf{w} - \mathbf{w}_c\| \le \epsilon_w} \mathsf{F}(\mu; \mathbf{w})$$

- Directly overwriting model w: less practical
- ullet Twin of adversarial examples (that optimize μ but fix ${f w}={f w}_c$)

Model	Clean TGDA		GradPC			
Model -	Acc.	Accuracy/Drop	$\epsilon_w = 0.5$	$\epsilon_w = 1$		
LR	92.35	89.56 / 2.79 ($\epsilon_w = 2.45$)	69.80 / 22.55	21.48 / 70.87		
NN	98.04	96.54 / 1.50 ($\epsilon_w = 0.55$)	76.51 / 20.03	31.14 / 66.90		
CNN	99.13	98.02 / 1.11 ($\epsilon_w = 0.74$)	73.24 / 24.78	12.98 / 86.15		

10/15

X. Sun et al. "Exploring the vulnerability of deep neural networks: A study of parameter corruption". In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020.

Example: Logistic regression

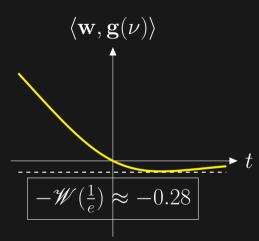
$$\ell(\mathbf{z}; \mathbf{w}) = \log(1 + \exp(-\mathbf{w}^{\top} \tilde{\mathbf{x}})),$$

whose gradient (w.r.t. w) is: $\mathbf{g}(\tilde{\mathbf{x}}) = -\frac{1}{1 + \exp(\mathbf{w}^{\top} \tilde{\mathbf{x}})} \tilde{\mathbf{x}}$.

On direction w, for any distribution ν we have

$$-\mathcal{W}(\frac{1}{e}) = \inf_{t} \frac{-t}{1 + \exp(t)} \le \langle \mathbf{w}, \mathbf{g}(\nu) \rangle \le \sup_{t} \frac{-t}{1 + \exp(t)}$$

L18 11/15



L18 12/3

Transition Threshold

• Recall model poisoning reachability:

$$\mathbf{g}(\mu; \mathbf{w}) + \epsilon_d \cdot \mathbf{g}(\nu; \mathbf{w}) = \mathbf{0}$$

• Taking inner product with w:

$$\underbrace{\langle \mathbf{w}, \mathbf{g}(\mu) \rangle}_{\text{can be } \infty} + \epsilon_d \cdot \underbrace{\langle \mathbf{w}, \mathbf{g}(\nu) \rangle}_{\geq -0.28} = 0$$

• Thus, for

$$\epsilon_d < \boxed{\tau :\approx \max\{\frac{\langle \mathbf{w}, \mathbf{g}(\mu) \rangle}{0.28}, 0\}}$$

any poisoning attack can not reach target model $\mathbf{w}!$

L18 13/1

Definition: Model Poisoning Reachability

We say a target parameter ${\bf w}$ is ϵ_d -poisoning reachable if there exists some poisoning distribution ν such that

$$\mathbf{g}(\chi; \mathbf{w}) = \mathbf{g}(\mu; \mathbf{w}) + \epsilon_d \mathbf{g}(\nu; \mathbf{w}) = \mathbf{0},$$

i.e. the parameter ${\bf w}$ has vanishing gradient (w.r.t. loss ℓ) over the mixed distribution $\chi \propto \mu + \epsilon_d \nu$.

Definition: Gradient Canceling Attack

$$\min_{\nu} \ \frac{1}{2} \|\mathbf{g}(\mu) + \epsilon_d \mathbf{g}(\nu)\|_2^2 \to \min_{\hat{\nu}} \ \frac{1}{2} \|\mathbf{g}(\mu) + \epsilon_d \cdot \frac{1}{n\epsilon_d} \sum_{j=1}^{n\epsilon_d} \nabla_{\mathbf{w}} \ell(\mathbf{z}_j; \mathbf{w}) \|_2^2,$$

where $\mathbf{z}_i = (\mathbf{x}_i, y_i)$ are individual data samples.

How Competitive is Gradient Canceling (GC)?

- GC is much more effective than baseline methods
- When $\epsilon_d = \tau$, GC roughly achieves the target parameters

Dataset	Target Model ϵ_d	Clean Acc 0	GradPC 0	0.03	Gradient 0.1	Canceling 1	$\epsilon_d = au$	0.03	TGDA 0.1	1
MNIST	LR NN CNN	92.35 98.04 99.13	-70.87 (τ =1.15) -20.03 (τ =2.48) -24.78 (τ =0.98)	-22.97 -6.10 -9.55	-63.83 -9.77 -20.10	-67.01 -12.05 -23.80	-69.66 -19.05 -23.77	-2.79 -1.50 -1.11	-4.01 -1.72 -1.31	-8.97 -5.49 -4.76
CIFAR-10	ResNet-18	94.95	-21.69 (τ=1.29)	-13.73	-16.40	-18.33	-19.98	-5.54	-6.28	-17.21
TinyImageNet	ResNet-34	66.65	-24.77 (<i>τ</i> =1.08)	-13.22	-16.11	-20.15	-22.79	-4.42	-6.52	-14.33

15/1

